📄 svm1d.html
字号:
<html><head> <meta HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=ISO-8859-1"> <title>svm1d.m</title><link rel="stylesheet" type="text/css" href="../../m-syntax.css"></head><body><code><span class=defun_kw>function</span> <span class=defun_out>model</span>=<span class=defun_name>svm1d</span>(<span class=defun_in>data,options</span>)<br><span class=h1>% SVM1D Linear SVM for 1-dimensional input data.</span><br><span class=help>%</span><br><span class=help>% <span class=help_field>Synopsis:</span></span><br><span class=help>% model = svm1d( data )</span><br><span class=help>% model = svm1d( data, options )</span><br><span class=help>%</span><br><span class=help>% <span class=help_field>Description:</span></span><br><span class=help>% model = svm1d( data ) trains the linear SVM binary</span><br><span class=help>% classifier for the 1-dimensional training data.</span><br><span class=help>% The optimizer is based on a modification of the </span><br><span class=help>% Sequential Minimal Optimizer (SMO) [Platt98]. </span><br><span class=help>% The trainined classfier is defined as</span><br><span class=help>% q(x) = 1 if W*x + b >= 0</span><br><span class=help>% = 2 if W*x + b < 0</span><br><span class=help>%</span><br><span class=help>% model = svm1d( data, options ) use to set up control</span><br><span class=help>% parameters for the SVM and the SMO algorithm.</span><br><span class=help>%</span><br><span class=help>% <span class=help_field>Input:</span></span><br><span class=help>% data [struct] Input 1-dimensional binary labeled training data:</span><br><span class=help>% .X [1 x num_data] Training numbers.</span><br><span class=help>% .y [1 x num_data] Labels (1 or 2).</span><br><span class=help>% </span><br><span class=help>% options [struct] Control parameters:</span><br><span class=help>% .C [1x1] SVM regularization constant (default C=inf). </span><br><span class=help>% .eps [1x1] Tolerance of KKT-conditions (default eps=0.001).</span><br><span class=help>% .tol [1x1] Minimal change of variables (default tol=0.001).</span><br><span class=help>%</span><br><span class=help>% <span class=help_field>Output:</span></span><br><span class=help>% model [struct] Found SVM model:</span><br><span class=help>% .Alpha [nsv x 1] Weights.</span><br><span class=help>% .b [1x1] Bias of decision function.</span><br><span class=help>% .sv.X [1 x nsv] Support vectors.</span><br><span class=help>% .W [1x1] Explicit value of the normal vector (scalar).</span><br><span class=help>%</span><br><span class=help>% .nsv [1x1] Number of Support Vectors.</span><br><span class=help>% .kercnt [1x1] Number of kernel evaluations (multiplications </span><br><span class=help>% in this 1-d linear case) used by the SMO.</span><br><span class=help>% .trnerr [1x1] Training classification error.</span><br><span class=help>% .margin [1x1] Margin of found classifier.</span><br><span class=help>% .cputime [1x1] Used CPU time in seconds.</span><br><span class=help>% .options [struct] Copy of used options.</span><br><span class=help>%</span><br><span class=help>% See also </span><br><span class=help>% SMO, SVMCLASS, KFD, KFDQP.</span><br><span class=help>%</span><br><hr><span class=help1>% <span class=help1_field>About:</span> Statistical Pattern Recognition Toolbox</span><br><span class=help1>% (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac</span><br><span class=help1>% <a href="http://www.cvut.cz">Czech Technical University Prague</a></span><br><span class=help1>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a></span><br><span class=help1>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a></span><br><br><span class=help1>% <span class=help1_field>Modifications:</span></span><br><span class=help1>% 17-may-2004, VF</span><br><span class=help1>% 14-may-2004, VF</span><br><span class=help1>% 15-july-2003, VF</span><br><br><hr><span class=comment>% timer</span><br>tic;<br><br><span class=comment>% Process input arguments </span><br><span class=comment>% --------------------------</span><br>[dim,num_data] = size(data.X);<br><span class=keyword>if</span> dim ~= 1,<br> <span class=error>error</span>(<span class=quotes>'Inpu data must be one-dimensional.'</span>);<br><span class=keyword>end</span><br> <br><span class=keyword>if</span> <span class=stack>nargin</span> < 2, options = []; <span class=keyword>else</span> options=c2s(options); <span class=keyword>end</span><br><span class=keyword>if</span> ~isfield(options,<span class=quotes>'C'</span>), options.C = inf; <span class=keyword>end</span><br><span class=keyword>if</span> ~isfield(options,<span class=quotes>'eps'</span>), options.eps = 0.001; <span class=keyword>end</span><br><span class=keyword>if</span> ~isfield(options,<span class=quotes>'tol'</span>), options.tol = 0.001; <span class=keyword>end</span><br><br><span class=comment>% call MEX function</span><br><span class=comment>%---------------------------</span><br>[model.Alpha, model.b, model.nsv, model.kercnt, model.trnerr, model.margin]...<br> = smo1d_mex(data.X, data.y, options.C, options.eps, options.tol);<br><br><span class=comment>% fill up the output structure</span><br><span class=comment>%---------------------------------</span><br>inx = find( model.Alpha );<br>model.sv.X = data.X(:,inx);<br>model.sv.y = data.y(inx);<br>model.sv.inx = inx;<br>model.Alpha = model.Alpha(inx);<br>model.Alpha( find(model.sv.y==2)) = -model.Alpha( find(model.sv.y==2 ));<br>model.W = model.sv.X*model.Alpha;<br>options.ker = <span class=quotes>'linear'</span>;<br>options.arg = 1;<br>model.options = options;<br>model.fun = <span class=quotes>'svmclass'</span>;<br>model.cputime = toc;<br><br><span class=jump>return</span>;<br><span class=comment>% EOF</span><br></code>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -