⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pandr.html

📁 很好的matlab模式识别工具箱
💻 HTML
字号:
<html><head>  <meta HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=ISO-8859-1">  <title>pandr.m</title><link rel="stylesheet" type="text/css" href="../../m-syntax.css"></head><body><code><span class=defun_kw>function</span>&nbsp;<span class=defun_out>varargout&nbsp;</span>=&nbsp;<span class=defun_name>pandr</span>(<span class=defun_in>model,distrib</span>)
<br><span class=h1>%&nbsp;PANDR&nbsp;Visualizes&nbsp;solution&nbsp;of&nbsp;the&nbsp;Generalized&nbsp;Anderson's&nbsp;task.
</span><br><span class=help>%
</span><br><span class=help>%&nbsp;<span class=help_field>Synopsis:</span></span><br><span class=help>%&nbsp;&nbsp;h&nbsp;=&nbsp;pandr(model)
</span><br><span class=help>%
</span><br><span class=help>%&nbsp;<span class=help_field>Description:</span></span><br><span class=help>%&nbsp;&nbsp;It&nbsp;vizualizes&nbsp;solution&nbsp;of&nbsp;the&nbsp;Generalized&nbsp;Anderson's&nbsp;task&nbsp;
</span><br><span class=help>%&nbsp;&nbsp;for&nbsp;bivariate&nbsp;input&nbsp;Gaussians.
</span><br><span class=help>%&nbsp;&nbsp;
</span><br><span class=help>%&nbsp;&nbsp;The&nbsp;input&nbsp;of&nbsp;the&nbsp;task&nbsp;are&nbsp;two&nbsp;sets&nbsp;of&nbsp;Gaussians&nbsp;which&nbsp;
</span><br><span class=help>%&nbsp;&nbsp;describe&nbsp;the&nbsp;first&nbsp;and&nbsp;second&nbsp;class.&nbsp;The&nbsp;Gaussians&nbsp;are&nbsp;denoted&nbsp;as&nbsp;
</span><br><span class=help>%&nbsp;&nbsp;the&nbsp;ellipses&nbsp;(shape&nbsp;-&gt;&nbsp;covariance,&nbsp;center&nbsp;-&gt;&nbsp;mean).&nbsp;
</span><br><span class=help>%&nbsp;&nbsp;The&nbsp;output&nbsp;of&nbsp;the&nbsp;task&nbsp;is&nbsp;the&nbsp;linear&nbsp;classifier&nbsp;denoted&nbsp;as&nbsp;a&nbsp;line&nbsp;
</span><br><span class=help>%&nbsp;&nbsp;separating&nbsp;the&nbsp;2D&nbsp;feature&nbsp;space.
</span><br><span class=help>%
</span><br><span class=help>%&nbsp;<span class=help_field>Input:</span></span><br><span class=help>%&nbsp;&nbsp;model&nbsp;[struct]&nbsp;Linear&nbsp;classifier:
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.W&nbsp;[2&nbsp;x&nbsp;1]&nbsp;Normal&nbsp;vector&nbsp;of&nbsp;the&nbsp;separating&nbsp;hyperplane.
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.b&nbsp;[real]&nbsp;Bias&nbsp;of&nbsp;the&nbsp;hyperplane.
</span><br><span class=help>%
</span><br><span class=help>%&nbsp;&nbsp;distrib&nbsp;[struct]&nbsp;Set&nbsp;of&nbsp;binary&nbsp;labeled&nbsp;Gaussians:
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.Mean&nbsp;[2&nbsp;x&nbsp;ncomp]&nbsp;Mean&nbsp;vectors.
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.Cov&nbsp;[2&nbsp;x&nbsp;2&nbsp;x&nbsp;ncomp]&nbsp;Covariance&nbsp;matrices.
</span><br><span class=help>%&nbsp;&nbsp;&nbsp;.y&nbsp;[1&nbsp;x&nbsp;ncomp]&nbsp;Labels&nbsp;1&nbsp;or&nbsp;2.&nbsp;
</span><br><span class=help>%
</span><br><span class=help>%&nbsp;<span class=help_field>Output:</span></span><br><span class=help>%&nbsp;&nbsp;h&nbsp;[1&nbsp;x&nbsp;nobjects]&nbsp;Handles&nbsp;of&nbsp;used&nbsp;graphics&nbsp;objects.
</span><br><span class=help>%&nbsp;&nbsp;
</span><br><span class=help>%&nbsp;<span class=help_field>Example:</span></span><br><span class=help>%&nbsp;
</span><br><hr><br><span class=help1>%&nbsp;<span class=help1_field>About:</span>&nbsp;Statistical&nbsp;Pattern&nbsp;Recognition&nbsp;Toolbox
</span><br><span class=help1>%&nbsp;(C)&nbsp;1999-2003,&nbsp;Written&nbsp;by&nbsp;Vojtech&nbsp;Franc&nbsp;and&nbsp;Vaclav&nbsp;Hlavac
</span><br><span class=help1>%&nbsp;&lt;a&nbsp;href="http://www.cvut.cz"&gt;Czech&nbsp;Technical&nbsp;University&nbsp;Prague&lt;/a&gt;
</span><br><span class=help1>%&nbsp;&lt;a&nbsp;href="http://www.feld.cvut.cz"&gt;Faculty&nbsp;of&nbsp;Electrical&nbsp;Engineering&lt;/a&gt;
</span><br><span class=help1>%&nbsp;&lt;a&nbsp;href="http://cmp.felk.cvut.cz"&gt;Center&nbsp;for&nbsp;Machine&nbsp;Perception&lt;/a&gt;
</span><br><br><span class=help1>%&nbsp;<span class=help1_field>Modifications:</span>
</span><br><span class=help1>%&nbsp;4-may-2004,&nbsp;VF
</span><br><span class=help1>%&nbsp;24-feb-2003,&nbsp;VF
</span><br><span class=help1>%&nbsp;30-sep-2002,&nbsp;VF
</span><br><br><hr>[err,r,inx]&nbsp;=&nbsp;andrerr(&nbsp;model,&nbsp;distrib&nbsp;);
<br>
<br>[dim,&nbsp;ncomp&nbsp;]&nbsp;=&nbsp;size(&nbsp;distrib.Mean&nbsp;);
<br><span class=keyword>for</span>&nbsp;i=1:ncomp,
<br>&nbsp;&nbsp;p(i)&nbsp;=&nbsp;exp(-0.5*r^2)/(2*pi*sqrt(det(distrib.Cov(:,:,i))));
<br><span class=keyword>end</span>
<br>
<br>h1&nbsp;=&nbsp;pgauss(&nbsp;distrib,&nbsp;{<span class=quotes>'p'</span>,p});
<br>h2&nbsp;=&nbsp;pline(&nbsp;model&nbsp;);
<br>
<br><span class=keyword>if</span>&nbsp;<span class=stack>nargout</span>&nbsp;&gt;&nbsp;0,
<br>&nbsp;&nbsp;<span class=stack>varargout</span>{1}&nbsp;=&nbsp;[h1&nbsp;h2];
<br><span class=keyword>end</span>
<br>
<br><span class=jump>return</span>;
<br></code>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -