⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pgmm.html

📁 很好的matlab模式识别工具箱
💻 HTML
字号:
<html><head>  <meta HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=ISO-8859-1">  <title>Contents.m</title><link rel="stylesheet" type="text/css" href="../stpr.css"></head><body><table  border=0 width="100%" cellpadding=0 cellspacing=0><tr valign="baseline"><td valign="baseline" class="function"><b class="function">PGMM</b><td valign="baseline" align="right" class="function"><a href="../visual/index.html" target="mdsdir"><img border = 0 src="../up.gif"></a></table>  <p><b>Vizualizes Gaussian mixture model.
</b></p>  <hr><div class='code'><code><span class=help>
</span><br><span class=help>&nbsp;<span class=help_field>Synopsis:</span></span><br><span class=help>&nbsp;&nbsp;pgmm(&nbsp;model&nbsp;);
</span><br><span class=help>&nbsp;&nbsp;pgmm(&nbsp;model,&nbsp;options&nbsp;);
</span><br><span class=help>&nbsp;&nbsp;h&nbsp;=&nbsp;pgmm(&nbsp;...&nbsp;);
</span><br><span class=help>
</span><br><span class=help>&nbsp;<span class=help_field>Description:</span></span><br><span class=help>&nbsp;&nbsp;It&nbsp;vizualizes&nbsp;univariate&nbsp;(dim=1)&nbsp;or&nbsp;bivariate&nbsp;(dim=2)&nbsp;Gaussin&nbsp;mixture&nbsp;
</span><br><span class=help>&nbsp;&nbsp;model&nbsp;(GMM).&nbsp;In&nbsp;the&nbsp;univariate&nbsp;case&nbsp;it&nbsp;also&nbsp;displays&nbsp;mixture&nbsp;components.&nbsp;
</span><br><span class=help>&nbsp;&nbsp;It&nbsp;returns&nbsp;handles&nbsp;of&nbsp;used&nbsp;graphics&nbsp;objects.
</span><br><span class=help>
</span><br><span class=help>&nbsp;&nbsp;In&nbsp;the&nbsp;case&nbsp;of&nbsp;bivariate&nbsp;GMM&nbsp;trhere&nbsp;are&nbsp;two&nbsp;options&nbsp;of&nbsp;visualization:
</span><br><span class=help>&nbsp;&nbsp;&nbsp;&nbsp;countours&nbsp;of&nbsp;p.d.f.&nbsp;&nbsp;...&nbsp;options.visual&nbsp;=&nbsp;'contour'&nbsp;(default)
</span><br><span class=help>&nbsp;&nbsp;&nbsp;&nbsp;surface&nbsp;of&nbsp;p.d.f.&nbsp;&nbsp;&nbsp;&nbsp;...&nbsp;options.visual&nbsp;=&nbsp;'surf'
</span><br><span class=help>&nbsp;
</span><br><span class=help>&nbsp;<span class=help_field>Input:</span></span><br><span class=help>&nbsp;&nbsp;model.Mean&nbsp;[dim&nbsp;x&nbsp;ncomp]&nbsp;Mean&nbsp;values.
</span><br><span class=help>&nbsp;&nbsp;model.Cov&nbsp;[dim&nbsp;x&nbsp;ncomp]&nbsp;Covariances.
</span><br><span class=help>&nbsp;&nbsp;model.Prior&nbsp;[dim&nbsp;x&nbsp;ncomp]&nbsp;Mixture&nbsp;weights.
</span><br><span class=help>
</span><br><span class=help>&nbsp;&nbsp;options.comp&nbsp;[1x1]&nbsp;If&nbsp;1&nbsp;(default)&nbsp;then&nbsp;it&nbsp;plots&nbsp;also&nbsp;mixture&nbsp;components.
</span><br><span class=help>&nbsp;&nbsp;options.visual&nbsp;[string]&nbsp;If&nbsp;equal&nbsp;to&nbsp;'contour'&nbsp;then&nbsp;contour&nbsp;function&nbsp;is&nbsp;
</span><br><span class=help>&nbsp;&nbsp;&nbsp;&nbsp;used&nbsp;if&nbsp;'surf'&nbsp;then&nbsp;surf&nbsp;functions&nbsp;is&nbsp;used&nbsp;(see&nbsp;above).
</span><br><span class=help>&nbsp;&nbsp;options.adj_axes&nbsp;[1x1]&nbsp;If&nbsp;1&nbsp;(default)&nbsp;then&nbsp;axes&nbsp;are&nbsp;set&nbsp;to&nbsp;display&nbsp;
</span><br><span class=help>&nbsp;&nbsp;&nbsp;whole&nbsp;mixture&nbsp;otherwise&nbsp;unchanged.
</span><br><span class=help>&nbsp;&nbsp;options.color&nbsp;[string]&nbsp;Color&nbsp;of&nbsp;GMM&nbsp;plot&nbsp;in&nbsp;univariate&nbsp;case&nbsp;(default&nbsp;'b').
</span><br><span class=help>
</span><br><span class=help>&nbsp;<span class=help_field>Output:</span></span><br><span class=help>&nbsp;&nbsp;h&nbsp;[1&nbsp;x&nbsp;nobjects]&nbsp;Handles&nbsp;of&nbsp;used&nbsp;graphics&nbsp;object.
</span><br><span class=help>
</span><br><span class=help>&nbsp;<span class=help_field>Example:</span></span><br><span class=help>
</span><br><span class=help>&nbsp;Univariate&nbsp;case:
</span><br><span class=help>&nbsp;&nbsp;model1&nbsp;=&nbsp;c2s({'Mean',[-3&nbsp;0&nbsp;3],'Cov',[0.5&nbsp;1&nbsp;0.8],'Prior',[0.4&nbsp;0.3&nbsp;0.3]});
</span><br><span class=help>&nbsp;&nbsp;figure;&nbsp;pgmm(model1);
</span><br><span class=help>
</span><br><span class=help>&nbsp;Bivariate&nbsp;case:
</span><br><span class=help>&nbsp;&nbsp;model2.Mean(:,1)&nbsp;=&nbsp;[-1;-1];&nbsp;model2.Cov(:,:,1)&nbsp;=&nbsp;[1,0.5;0.5,1];
</span><br><span class=help>&nbsp;&nbsp;model2.Mean(:,2)&nbsp;=&nbsp;[1;1];&nbsp;model2.Cov(:,:,2)&nbsp;=&nbsp;[1,-0.5;-0.5,1];
</span><br><span class=help>&nbsp;&nbsp;model2.Prior&nbsp;=&nbsp;[0.4&nbsp;0.6];
</span><br><span class=help>&nbsp;&nbsp;figure;&nbsp;pgmm(model2);
</span><br><span class=help>&nbsp;&nbsp;figure;&nbsp;pgmm(model2,{'visual','surf'});
</span><br><span class=help>
</span><br></code></div>  <hr>  <b>Source:</b> <a href= "../visual/list/pgmm.html">pgmm.m</a>  <p><b class="info_field">About: </b>  Statistical Pattern Recognition Toolbox
<br> (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac
<br> <a href="http://www.cvut.cz">Czech Technical University Prague</a>
<br> <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>
<br> <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>
<br>  <p><b class="info_field">Modifications: </b> 
<br> 2-may-2004, VF
<br> 29-apr2004, VF
<br> 8-mar-2004, VF
<br></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -