⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 psvm.html

📁 很好的matlab模式识别工具箱
💻 HTML
字号:
<html><head>  <meta HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=ISO-8859-1">  <title>Contents.m</title><link rel="stylesheet" type="text/css" href="../stpr.css"></head><body><table  border=0 width="100%" cellpadding=0 cellspacing=0><tr valign="baseline"><td valign="baseline" class="function"><b class="function">PSVM</b><td valign="baseline" align="right" class="function"><a href="../visual/index.html" target="mdsdir"><img border = 0 src="../up.gif"></a></table>  <p><b>Plots decision boundary of binary SVM classifier.</b></p>  <hr><div class='code'><code><span class=help></span><br><span class=help>&nbsp;<span class=help_field>Synopsis:</span></span><br><span class=help>&nbsp;&nbsp;h&nbsp;=&nbsp;psvm(...)</span><br><span class=help>&nbsp;&nbsp;psvm(model)</span><br><span class=help>&nbsp;&nbsp;psvm(model,options)</span><br><span class=help></span><br><span class=help>&nbsp;<span class=help_field>Description:</span></span><br><span class=help>&nbsp;&nbsp;This&nbsp;function&nbsp;samples&nbsp;the&nbsp;Support&nbsp;Vector&nbsp;Machiones&nbsp;(SVM)&nbsp;decision&nbsp;</span><br><span class=help>&nbsp;&nbsp;function&nbsp;f(x)&nbsp;in&nbsp;2D&nbsp;feature&nbsp;space&nbsp;and&nbsp;interpolates&nbsp;isoline&nbsp;</span><br><span class=help>&nbsp;&nbsp;width&nbsp;f(x)=0.&nbsp;The&nbsp;isolines&nbsp;f(x)=+1&nbsp;and&nbsp;f(x)=-1&nbsp;are&nbsp;plotted&nbsp;as&nbsp;well.&nbsp;</span><br><span class=help></span><br><span class=help>&nbsp;<span class=help_field>Input:</span></span><br><span class=help>&nbsp;&nbsp;model&nbsp;[struct]&nbsp;Model&nbsp;of&nbsp;binary&nbsp;SVM&nbsp;classifier:</span><br><span class=help>&nbsp;&nbsp;&nbsp;.Alpha&nbsp;[1&nbsp;x&nbsp;nsv]&nbsp;Weights&nbsp;of&nbsp;training&nbsp;data.</span><br><span class=help>&nbsp;&nbsp;&nbsp;.b&nbsp;[real]&nbsp;Bias&nbsp;of&nbsp;decision&nbsp;function.</span><br><span class=help>&nbsp;&nbsp;&nbsp;.sv.X&nbsp;[dim&nbsp;x&nbsp;nsv]&nbsp;Support&nbsp;vectors.</span><br><span class=help>&nbsp;&nbsp;&nbsp;.options.ker&nbsp;[string]&nbsp;Kernel&nbsp;function&nbsp;identifier.</span><br><span class=help>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;See&nbsp;'help&nbsp;kernel'&nbsp;for&nbsp;more&nbsp;info.</span><br><span class=help>&nbsp;&nbsp;&nbsp;.options.arg&nbsp;[1&nbsp;x&nbsp;nargs]&nbsp;Kernel&nbsp;argument(s).</span><br><span class=help></span><br><span class=help>&nbsp;options&nbsp;[struct]&nbsp;Controls&nbsp;apperance:</span><br><span class=help>&nbsp;&nbsp;.background&nbsp;[1x1]&nbsp;If&nbsp;1&nbsp;then&nbsp;backgroud&nbsp;is&nbsp;colored&nbsp;according&nbsp;to&nbsp;</span><br><span class=help>&nbsp;&nbsp;&nbsp;&nbsp;the&nbsp;value&nbsp;of&nbsp;decision&nbsp;function&nbsp;(default&nbsp;0).</span><br><span class=help>&nbsp;&nbsp;.sv&nbsp;[1x1]&nbsp;If&nbsp;1&nbsp;then&nbsp;the&nbsp;support&nbsp;vectors&nbsp;are&nbsp;marked&nbsp;(default&nbsp;1).</span><br><span class=help>&nbsp;&nbsp;.sv_size&nbsp;[1x1]&nbsp;Marker&nbsp;size&nbsp;of&nbsp;the&nbsp;support&nbsp;vectors.</span><br><span class=help>&nbsp;&nbsp;.margin&nbsp;[1x1]&nbsp;If&nbsp;1&nbsp;then&nbsp;margin&nbsp;is&nbsp;displayed&nbsp;(default&nbsp;1).</span><br><span class=help>&nbsp;&nbsp;.gridx&nbsp;[1x1]&nbsp;Sampling&nbsp;in&nbsp;x-axis&nbsp;(default&nbsp;25).</span><br><span class=help>&nbsp;&nbsp;.gridy&nbsp;[1x1]&nbsp;Sampling&nbsp;in&nbsp;y-axis&nbsp;(default&nbsp;25).</span><br><span class=help>&nbsp;&nbsp;.color&nbsp;[int]&nbsp;Color&nbsp;of&nbsp;decision&nbsp;boundary&nbsp;(default&nbsp;'k').</span><br><span class=help></span><br><span class=help>&nbsp;<span class=help_field>Output:</span></span><br><span class=help>&nbsp;&nbsp;h&nbsp;[struct]&nbsp;Handles&nbsp;of&nbsp;used&nbsp;graphical&nbsp;objects.</span><br><span class=help></span><br><span class=help>&nbsp;<span class=help_field>Example:</span></span><br><span class=help>&nbsp;&nbsp;data&nbsp;=&nbsp;load('riply_trn');&nbsp;&nbsp;</span><br><span class=help>&nbsp;&nbsp;model&nbsp;=&nbsp;smo(&nbsp;data,&nbsp;struct('ker','rbf','arg',1,'C',10)&nbsp;);</span><br><span class=help>&nbsp;&nbsp;figure;&nbsp;&nbsp;ppatterns(data);&nbsp;&nbsp;</span><br><span class=help>&nbsp;&nbsp;psvm(&nbsp;model,&nbsp;struct('background',1)&nbsp;);</span><br><span class=help></span><br><span class=help>&nbsp;<span class=also_field>See also </span><span class=also></span><br><span class=help><span class=also></span><br></code></div>  <hr>  <b>Source:</b> <a href= "../visual/list/psvm.html">psvm.m</a>  <p><b class="info_field">About: </b>  Statistical Pattern Recognition Toolbox<br> (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac<br> <a href="http://www.cvut.cz">Czech Technical University Prague</a><br> <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a><br> <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a><br>  <p><b class="info_field">Modifications: </b> <br> 25-may-2004, VF<br> 10-may-2004, VF<br> 5-oct-2003, VF, returns handles<br> 14-Jan-2003, VF<br> 21-oct-2001, V.Franc<br> 16-april-2001, V. Franc, created<br></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -