⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bayescls.html

📁 很好的matlab模式识别工具箱
💻 HTML
字号:
<html><head>  <meta HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=ISO-8859-1">  <title>Contents.m</title><link rel="stylesheet" type="text/css" href="../stpr.css"></head><body><table  border=0 width="100%" cellpadding=0 cellspacing=0><tr valign="baseline"><td valign="baseline" class="function"><b class="function">BAYESCLS</b><td valign="baseline" align="right" class="function"><a href="../bayes/index.html" target="mdsdir"><img border = 0 src="../up.gif"></a></table>  <p><b>Bayesian classifier with reject option.</b></p>  <hr><div class='code'><code><span class=help>&nbsp;</span><br><span class=help>&nbsp;<span class=help_field>Synopsis:</span></span><br><span class=help>&nbsp;&nbsp;[y,&nbsp;dfce]&nbsp;=&nbsp;bayescls(X,model)</span><br><span class=help></span><br><span class=help>&nbsp;<span class=help_field>Description:</span></span><br><span class=help>&nbsp;&nbsp;This&nbsp;function&nbsp;implements&nbsp;the&nbsp;classifier&nbsp;minimizing&nbsp;the&nbsp;Bayesian&nbsp;risk&nbsp;</span><br><span class=help>&nbsp;&nbsp;with&nbsp;0/1-loss&nbsp;function.&nbsp;It&nbsp;corresponds&nbsp;to&nbsp;the&nbsp;minimization&nbsp;of&nbsp;</span><br><span class=help>&nbsp;&nbsp;probability&nbsp;of&nbsp;misclassification.&nbsp;The&nbsp;input&nbsp;vectors&nbsp;X&nbsp;are&nbsp;classified&nbsp;</span><br><span class=help>&nbsp;&nbsp;into&nbsp;classes&nbsp;with&nbsp;the&nbsp;highest&nbsp;a&nbsp;posterior&nbsp;probabilities&nbsp;computed&nbsp;from&nbsp;</span><br><span class=help>&nbsp;&nbsp;given&nbsp;model.</span><br><span class=help>&nbsp;</span><br><span class=help>&nbsp;&nbsp;The&nbsp;model&nbsp;contains&nbsp;parameters&nbsp;of&nbsp;conditional&nbsp;class&nbsp;probabilities</span><br><span class=help>&nbsp;&nbsp;in&nbsp;model.Pclass&nbsp;[cell&nbsp;1&nbsp;x&nbsp;num_classes]&nbsp;and&nbsp;a&nbsp;priory&nbsp;probabilities</span><br><span class=help>&nbsp;&nbsp;in&nbsp;model.Prior&nbsp;[1&nbsp;x&nbsp;num_classes].&nbsp;</span><br><span class=help></span><br><span class=help>&nbsp;&nbsp;The&nbsp;function</span><br><span class=help>&nbsp;&nbsp;&nbsp;&nbsp;p&nbsp;=&nbsp;feval(model.Pclass{i}.fun,&nbsp;X,&nbsp;model.pclass{i})</span><br><span class=help>&nbsp;&nbsp;is&nbsp;called&nbsp;to&nbsp;evaluate&nbsp;the&nbsp;i-the&nbsp;class&nbsp;conditional&nbsp;probability&nbsp;of&nbsp;X.</span><br><span class=help>&nbsp;&nbsp;</span><br><span class=help>&nbsp;&nbsp;It&nbsp;returns&nbsp;class&nbsp;labels&nbsp;y&nbsp;[1&nbsp;x&nbsp;num_data]&nbsp;for&nbsp;each&nbsp;input&nbsp;vector</span><br><span class=help>&nbsp;&nbsp;and&nbsp;matrix&nbsp;dfce&nbsp;[num_class&nbsp;x&nbsp;num_data]&nbsp;of&nbsp;unnormalized&nbsp;a&nbsp;posterior</span><br><span class=help>&nbsp;&nbsp;probabilities</span><br><span class=help>&nbsp;&nbsp;&nbsp;&nbsp;dfce(y,i)&nbsp;=&nbsp;Conditional_probability(X(:,i)|y)*Prior(y).</span><br><span class=help></span><br><span class=help>&nbsp;&nbsp;If&nbsp;the&nbsp;field&nbsp;model.eps&nbsp;exists&nbsp;then&nbsp;the&nbsp;Bayesian&nbsp;classifier&nbsp;</span><br><span class=help>&nbsp;&nbsp;with&nbsp;the&nbsp;reject&nbsp;option&nbsp;is&nbsp;used.&nbsp;The&nbsp;eps&nbsp;is&nbsp;penalty&nbsp;for&nbsp;the&nbsp;</span><br><span class=help>&nbsp;&nbsp;decision&nbsp;"don't&nbsp;know"&nbsp;which&nbsp;is&nbsp;indicated&nbsp;by&nbsp;label&nbsp;y&nbsp;=&nbsp;0.</span><br><span class=help>&nbsp;&nbsp;&nbsp;</span><br><span class=help>&nbsp;<span class=help_field>Input:</span></span><br><span class=help>&nbsp;&nbsp;X&nbsp;[dim&nbsp;x&nbsp;num_data]&nbsp;Vectors&nbsp;to&nbsp;be&nbsp;classified.</span><br><span class=help></span><br><span class=help>&nbsp;&nbsp;model&nbsp;[struct]&nbsp;Describes&nbsp;probabilistic&nbsp;model:</span><br><span class=help>&nbsp;&nbsp;&nbsp;.Pclass&nbsp;[cell&nbsp;1&nbsp;x&nbsp;num_classes]&nbsp;Class&nbsp;conditional&nbsp;probabilities.</span><br><span class=help>&nbsp;&nbsp;&nbsp;.Prior&nbsp;[1&nbsp;x&nbsp;num_classes]&nbsp;A&nbsp;priory&nbsp;probabilities.</span><br><span class=help></span><br><span class=help>&nbsp;&nbsp;&nbsp;.eps&nbsp;[1x1]&nbsp;(optional)&nbsp;Penalty&nbsp;of&nbsp;decision&nbsp;"don't&nbsp;know".&nbsp;</span><br><span class=help></span><br><span class=help>&nbsp;<span class=help_field>Output:</span></span><br><span class=help>&nbsp;&nbsp;y&nbsp;[1&nbsp;x&nbsp;num_data]&nbsp;Labels&nbsp;(1&nbsp;to&nbsp;num_classes);&nbsp;0&nbsp;for&nbsp;"don't&nbsp;know".</span><br><span class=help>&nbsp;&nbsp;dfce&nbsp;[num_classes&nbsp;x&nbsp;num_data]&nbsp;Unnormalized&nbsp;a&nbsp;posterior&nbsp;</span><br><span class=help>&nbsp;&nbsp;&nbsp;probabilities&nbsp;(see&nbsp;above).</span><br><span class=help></span><br><span class=help>&nbsp;<span class=help_field>Example:</span></span><br><span class=help>&nbsp;&nbsp;trn&nbsp;=&nbsp;load('riply_trn');</span><br><span class=help>&nbsp;&nbsp;tst&nbsp;=&nbsp;load('riply_tst');</span><br><span class=help>&nbsp;&nbsp;inx1&nbsp;=&nbsp;find(trn.y==1);</span><br><span class=help>&nbsp;&nbsp;inx2&nbsp;=&nbsp;find(trn.y==2);</span><br><span class=help>&nbsp;&nbsp;model.Pclass{1}&nbsp;=&nbsp;mlcgmm(trn.X(:,inx1));</span><br><span class=help>&nbsp;&nbsp;model.Pclass{2}&nbsp;=&nbsp;mlcgmm(trn.X(:,inx2));</span><br><span class=help>&nbsp;&nbsp;model.Prior&nbsp;=&nbsp;[length(inx1)&nbsp;length(inx2)]/(length(inx1)+length(inx2));</span><br><span class=help>&nbsp;&nbsp;ypred&nbsp;=&nbsp;bayescls(tst.X,model);</span><br><span class=help>&nbsp;&nbsp;cerror(ypred,tst.y)</span><br><span class=help>&nbsp;</span><br><span class=help>&nbsp;<span class=also_field>See also </span><span class=also></span><br><span class=help><span class=also>&nbsp;&nbsp;<a href = "../bayes/bayesdf.html" target="mdsbody">BAYESDF</a>,&nbsp;<a href = "../bayes/bayeserr.html" target="mdsbody">BAYESERR</a>.</span><br><span class=help></span><br></code></div>  <hr>  <b>Source:</b> <a href= "../bayes/list/bayescls.html">bayescls.m</a>  <p><b class="info_field">About: </b>  Statistical Pattern Recognition Toolbox<br> (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac<br> <a href="http://www.cvut.cz">Czech Technical University Prague</a><br> <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a><br> <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a><br>  <p><b class="info_field">Modifications: </b> <br> 09-jun-2004, VF<br> 01-may-2004, VF<br> 11-mar-2004, VF, "don't" know decision added.<br> 19-sep-2003, VF<br></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -