📄 bayescls.m
字号:
function [y, dfce] = bayescls( X, model )% BAYESCLS Bayesian classifier with reject option.% % Synopsis:% [y, dfce] = bayescls(X,model)%% Description:% This function implements the classifier minimizing the Bayesian risk % with 0/1-loss function. It corresponds to the minimization of % probability of misclassification. The input vectors X are classified % into classes with the highest a posterior probabilities computed from % given model.% % The model contains parameters of conditional class probabilities% in model.Pclass [cell 1 x num_classes] and a priory probabilities% in model.Prior [1 x num_classes]. %% The function% p = feval(model.Pclass{i}.fun, X, model.pclass{i})% is called to evaluate the i-the class conditional probability of X.% % It returns class labels y [1 x num_data] for each input vector% and matrix dfce [num_class x num_data] of unnormalized a posterior% probabilities% dfce(y,i) = Conditional_probability(X(:,i)|y)*Prior(y).%% If the field model.eps exists then the Bayesian classifier % with the reject option is used. The eps is penalty for the % decision "don't know" which is indicated by label y = 0.% % Input:% X [dim x num_data] Vectors to be classified.%% model [struct] Describes probabilistic model:% .Pclass [cell 1 x num_classes] Class conditional probabilities.% .Prior [1 x num_classes] A priory probabilities.%% .eps [1x1] (optional) Penalty of decision "don't know". %% Output:% y [1 x num_data] Labels (1 to num_classes); 0 for "don't know".% dfce [num_classes x num_data] Unnormalized a posterior % probabilities (see above).%% Example:% trn = load('riply_trn');% tst = load('riply_tst');% inx1 = find(trn.y==1);% inx2 = find(trn.y==2);% model.Pclass{1} = mlcgmm(trn.X(:,inx1));% model.Pclass{2} = mlcgmm(trn.X(:,inx2));% model.Prior = [length(inx1) length(inx2)]/(length(inx1)+length(inx2));% ypred = bayescls(tst.X,model);% cerror(ypred,tst.y)% % See also % BAYESDF, BAYESERR.%% About: Statistical Pattern Recognition Toolbox% (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac% <a href="http://www.cvut.cz">Czech Technical University Prague</a>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications:% 09-jun-2004, VF% 01-may-2004, VF% 11-mar-2004, VF, "don't" know decision added.% 19-sep-2003, VF[dim,num_data]=size(X);num_classes = length( model.Pclass );dfce=zeros(num_classes,num_data);% compute unnormalized a posterior probabilitiesfor i=1:num_classes, dfce(i,:) = model.Prior(i)*feval(model.Pclass{i}.fun,X,model.Pclass{i});end% take maximum[tmp,y] = max(dfce);% reject optionsif isfield(model, 'eps'), perror = 1-tmp./sum(dfce,1); inx = find( perror > model.eps); y(inx) = 0;endreturn;% EOF
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -