📄 modwt_wvar_psd.m
字号:
function [CJ, f, CI_CJ, f_band] = modwt_wvar_psd(wvar, delta_t, CI_wvar)% modwt_wvar_psd -- Calculate estimate of band-averaged power spectral density from MODWT wavelet variance.%%****f* wmtsa.dwt/modwt_wvar_psd%% NAME% modwt_wvar_psd -- Calculate estimate of band-averaged power spectral density% from MODWT wavelet variance.%% SYNOPSIS% [CJ, f, CI_CJ, f_band] = modwt_wvar_psd(wvar, delta_t, [CI_wav])%% INPUTS% wvar = wavelet variance (Jx1 vector).% delta_t = sampling interval of original time series.% CI_wvar = confidence interval of wavelet variance (Jx2 array).% lower bound (column 1) and upper bound (column 2).%% OUTPUTS% CJ = estimate of average of power spectral density per octave band.% (Jx1 vector)% f = center frequency (geometric mean) of octave band.% (Jx1 vector)% CI_CJ = confidence interval of power spectral density estimate (Jx2 array)% lower bound (column 1) and upper bound (column 2).% f_band = lower and upper bounds of frequency octave band.% (Jx2 vector)%% SIDE EFFECTS%%% DESCRIPTION% modwt_wvar_psd calculates an estimate of the average spectral density% function from the MODWT wavelet variance. %% CJ, f, CI_CJ, and f_band are ordered by increasing level j and scale tau,% and hence decreasing frequency f. This is in the typical order of PSD% estimates by increasing frequency f. The reverse order of CJ by increasing% level j allows the ready comparision of CJ decomposed to different partial% levels J0.% % EXAMPLE%%% WARNINGS%%% ERRORS%%% NOTES%%% BUGS%%% TODO%%% ALGORITHM% C_j = 2^j * wvar(j) * delta_t, for j = 1:J0% % See page 316 of WMTSA for further details.%% REFERENCES% Percival, D. B. and A. T. Walden (2000) Wavelet Methods for% Time Series Analysis. Cambridge: Cambridge University Press.%% SEE ALSO% loglog_modwt_psd, modwt_wvar, modwt%% AUTHOR% Charlie Cornish%% CREATION DATE% 2003-11-09%% COPYRIGHT%%% CREDITS%%% REVISION% $Revision: 612 $%%***% $Id: modwt_wvar_psd.m 612 2005-10-28 21:42:24Z ccornish $usage_str = ['Usage: [CJ, f, CI_CJ, f_band] = ', mfilename, ... '(wvar, delta_t, [CI_wvar])']; %% Check input arguments and set defaults.error(nargerr(mfilename, nargin, [2:3], nargout, [0:4], 1, usage_str, 'struct'));if (exist('CI_wvar', 'var') && ~isempty(CI_wvar)) calc_ci = 1;else calc_ci = 0;endJ = length(wvar);wvar = wvar(:);j_range = [1:J]';% Calculate estimates of average PSD per octave band from wavelet varaiance.CJ = zeros(J,1) * NaN;CJ = wvar .* 2.^j_range * delta_t;if (calc_ci) CI_CJ = zeros(J,2) * NaN; CI_CJ(:,1) = CI_wvar(:,1) .* 2.^j_range * delta_t; CI_CJ(:,2) = CI_wvar(:,2) .* 2.^j_range * delta_t;else CI_CJ = [];end% Calculate frequency band and center frequency for each PSD intervalf_band(:,1) = 1 ./ (2.^(j_range+1) * delta_t);f_band(:,2) = 1 ./ (2.^(j_range) * delta_t);f = sqrt(f_band(:,1) .* f_band(:,2));return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -