⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 modwt_mra.m

📁 时间序列分析中很用的源码,书的原名为时间序列分析的小波方法.
💻 M
字号:
function [DJt, SJt, mra_att] = modwt_mra(X, wtf, nlevels, boundary)% modwt_mra -- Calculate MODWT multi-resolution details and smooths of a time series (direct method).%%****f* wmtsa.dwt/modwt_mra.m%% NAME%   modwt_mra -- Calculate MODWT multi-resolution details and smooths of a time%                series (direct method).%% SYNOPSIS%   [DJt, SJt, mra_att] = modwt(X, wtfname, nlevels, boundary)%% INPUTS%   * X          -- set of observations %                   (vector of length N or matrix of size N x Nchan)%   * wtf        -- (optional) wavelet transform filter name or struct %                   (string, case-insensitve or wtf struct).%                   Default:  'la8'%   * nlevels    -- (optional) maximum level J0 (integer) %                   or method of calculating J0 (string).%                   Valid values: integer>0 or a valid method name%                   Default:  'conservative'%   * boundary   -- (optional) boundary conditions to use (string)%                   Valid values: 'circular' or 'reflection'%                   Default: 'reflection'%   * opts       -- (optional) Additional function options.%% OUTPUT%   * DJt        -- MODWT details coefficents (N x J x NChan array).%   * SJt        -- MODWT smooth coefficients (N x {1,J} x NChan vector).%   * mra_att    -- structure containing IMODWT MRA transform attributes%% SIDE EFFECTS%   1.  wtfname is a WMTSA-supported MODWT wavelet filter; otherwise error.%   2.  nlevels is an integer > 0, or is a string containing valid method for%       choosing J0; otherwise error.%% DESCRIPTION%   modwt_mra calculates the MODWT MRA detail and smooth coefficients%   from a set of observations in a single function call.%%    The output parameter att is a structure with the following fields:%       name      - name of transform (= 'MODWT')%       wtfname   - name of MODWT wavelet filter%       npts      - number of observations (= length(X))%       J0        - number of levels %       boundary  - boundary conditions%% EXAMPLE%%% NOTES%%% ALGORITHM%   See pages 177-179 of WMTSA for description of Pyramid Algorithm for%   the inverse MODWT multi-resolution analysis.%% REFERENCES%   Percival, D. B. and A. T. Walden (2000) Wavelet Methods for%   Time Series Analysis. Cambridge: Cambridge University Press.%% SEE ALSO%   imodwt_mra, imodwt_details, imodwt_smooth, imodwtj, modwt, modwt_filter%% AUTHOR%   Charlie Cornish%% CREATION DATE%   2004-04-29%% COPYRIGHT%%% REVISION%   $Revision: 612 $%%***% $Id: modwt_mra.m 612 2005-10-28 21:42:24Z ccornish $  defaults.wtfname = 'la8';  defaults.boundary = 'reflection';  defaults.nlevels  = 'conservative';  usage_str = ['Usage:  [DJt, SJt, mra_att] = ', mfilename, ...               '(X, wtfname, [nlevels], [boundary])'];  %%  Check input arguments and set defaults.  error(nargerr(mfilename, nargin, [1:4], nargout, [0:3], 1, usage_str, 'struct'));  set_defaults(defaults);    [WJt, VJt, w_att] = modwt(X, wtf, nlevels, boundary);  [DJt, SJt, mra_att] = imodwt_mra(WJt, VJt, w_att);      return  

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -