⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 modwt_cum_wav_svar.m

📁 时间序列分析中很用的源码,书的原名为时间序列分析的小波方法.
💻 M
字号:
function [cwsvar] = modwt_cum_wav_svar(WJt, wtfname)% modwt_cum_wav_svar -- Calculate cumulative sample variance of MODWT wavelet coefficients.%%****f* wmtsa.dwt/modwt_cum_wav_svar%% NAME%   modwt_cum_wav_svar -- Calculate cumulative sample variance of %         MODWT wavelet coefficients.%% SYNOPSIS%   [cwsvar] = modwt_cum_wav_svar(WJt, wtfname)%% INPUTS%   WJt          -  NxJ array of MODWT wavelet coefficents%                   where N = number of time intervals%                         J = number of levels%   wtfname      -  string containing name of a WMTSA-supported MODWT %                   wavelet filter.%% OUTPUTS%   cwsvar       -  cumulative wavelet sample variance.%% SIDE EFFECTS%%% DESCRIPTION%%% EXAMPLE%%% ALGORITHM%%   cwsvar(j,t) = 1/N * sum( WJt^2 subscript(j,u+nuH_j mod N)) %                    for t = 0,N-1 at jth level%%   For details, see page 189 of WMTSA.   %% REFERENCES%   Percival, D. B. and A. T. Walden (2000) Wavelet Methods for%     Time Series Analysis. Cambridge: Cambridge University Press.%% SEE ALSO%   modwt_cir_shift, modwt%% AUTHOR%   Charlie Cornish%% CREATION DATE%   2003-05-16%% COPYRIGHT%%% REVISION%   $Revision: 612 $%%***% $Id: modwt_cum_wav_svar.m 612 2005-10-28 21:42:24Z ccornish $    usage_str = ['Usage:  [cwsvar] = ', mfilename, ...               '(WJt, wavelet)'];  %%  Check input arguments and set defaults.  error(nargerr(mfilename, nargin, [2:2], nargout, [0:1], 1, usage_str, 'struct'));  % Check for valid wavelet and get wavelet filter coefficients  try    wtf_s = modwt_filter(wtfname);  catch    rethrow(lasterror);  end  ht = wtf_s.h;  gt = wtf_s.g;  L = wtf_s.L;  [N, J] = size(WJt);  cwsvar = zeros(N, J);  TWJt = modwt_cir_shift(WJt, [], wtfname);  for (j = 1:J)    cwsvar(:,j) = cumsum(TWJt(:,j).^2) / N;  endreturn

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -