⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 modwt_wcor.m

📁 时间序列分析中很用的源码,书的原名为时间序列分析的小波方法.
💻 M
字号:
function [wcor, CI_wcor] = modwt_wcor(WJtX, WJtY, p)% modwt_wcor -- Calculate the wavelet correlation of MODWT wavelet coefficients.%%****f* wmtsa.dwt/modwt_wcor%% NAME%   modwt_wcor -- Calculate the wavelet correlation of two sets of MODWT%                 wavelet coefficients.%% SYNOPSIS%   [wcor, CI_wcor] = modwt_wcor(WJtX, WJtY, [p])%% INPUTS%   WJtX         - NxJ array containing MODWT-computed wavelet coefficients%                  for X dataset%                  where N  = number of time intervals,%                        J = number of levels.%   WJtY         - NxJ matrix containing MODWT-computed wavelet coefficients%                  for Y dataset.%   p            - (optional) percentage point for confidence interval.%                  default: 0.025 ==> 95% confidence interval%% OUTPUTS%   wcor         - Jx1 vector containing wavelet correlations.%   CI_wcor      - Jx2 array containing confidence interval of wcor,%                  lower bound (column 1) and upper bound (column 2).%% SIDE EFFECTS%%% DESCRIPTION%%% EXAMPLE%%% NOTES%%% ALGORITHM%%% REFERENCES%   Whitcher, B., P. Guttorp and D. B. Percival (2000)%      Wavelet Analysis of Covariance with Application to Atmospheric Time%      Series, \emph{Journal of Geophysical Research}, \bold{105}, No. D11,%      14,941-14,962.%% SEE ALSO%   modwt%% AUTHOR%   Charlie Cornish%   Brandon Whitcher%% CREATION DATE%   2003-04-23%% Credits:%   Based on original function wave_cov.m by Brandon Whitcher.%% COPYRIGHT%%% REVISION%   $Revision: 612 $%%***%% $Id: modwt_wcor.m 612 2005-10-28 21:42:24Z ccornish $%%%% Compute wavelet correlation with approximate 95% confidence interval%% -----------------------------------------------------------------------%% Input: X  Matrix containing wavelet coefficients with appropriate %%           boundary condition%%        Y  Matrix containing wavelet coefficients with appropriate %%           boundary condition%%%% Output: C  Matrix containing the wavelet correlation (column 1), lower %%            95% quantile for confidence interval, upper 95% quantile %%            for confidence interval%%  usage_str = ['Usage:  [wcor, CI_wcor] = ', mfilename, ...               '(WJtX, WJtY, [p])'];  %%  Check input arguments and set defaults.  error(nargerr(mfilename, nargin, [2:3], nargout, [0:2], 1, usage_str, 'struct')); set_default('p', 0.025);  [N, J] = size(WJtX);    WJtXY = WJtX .* WJtY;    SSX  = NaN * zeros(J, 1);  SSY  = NaN * zeros(J, 1);  SSXY = NaN * zeros(J, 1);    for (j = 1:J)    WJtXNaN = WJtX(~isnan(WJtX(:,j)),j)';    SSX(j) = sum(WJtXNaN.^2);    WJtYNaN = WJtY(~isnan(WJtY(:,j)),j)';    SSY(j) = sum(WJtYNaN.^2);    WJtXYNaN = WJtXY(~isnan(WJtXY(:,j)),j)';    SSXY(j) = sum(WJtXYNaN);  end  NX = sum(~isnan(WJtX),1)';  COR = (SSXY./NX) ./ (sqrt(SSX./NX) .* sqrt(SSY./NX));    % Return as column vector  wcor = COR(:);    if (nargout > 1)    NDWT = floor(N ./ 2.^(1:J))';      CI_wcor = zeros(J, 2);    CI_wcor = [tanh(atanh(COR) - norminv(1-p) ./ sqrt(NDWT-3)), ...               tanh(atanh(COR) + norminv(1-p) ./ sqrt(NDWT-3))];  end  return

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -