⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 wmtsa_gen_fd_sdf_acvs.m

📁 时间序列分析中很用的源码,书的原名为时间序列分析的小波方法.
💻 M
字号:
function s_X = wmtsa_gen_fd_sdf_acvs(N, delta, sigma_squared)% wmtsa_gen_fd_sdf_acvs -- Generate the ACVS from the SDF of fractionally difference (FD) process.%%****f* wmtsa.signal/wmtsa_gen_fd_sdf_acvs%% NAME%   wmtsa_gen_fd_sdf_acvs -- Generate the ACVS from the SDF of fractionally difference (FD) process.%% SYNOPSIS%   s_X = wmtsa_gen_fd_sdf_acvs(N, delta, sigma_squared)%% INPUTS%   * N           -- number of data points in series (integer).%   * delta       -- long memory parameter for FD process (vector).%   * sigma_squared -- (optional) process variance.%                    Default:  1%% OUTPUTS%   * s_X         -- ACVS of SDF of FD process (2*N+1 x length(delta) array).%% SIDE EFFECTS%%% DESCRIPTION%   For given delta(s) and series length N, function calculates the %   autocovariance sequence (ACVS) of the spectral density function (SDF)%   of a fractionally differenced (FD) process.%%   delta may be vector of values in the range -1 =< delta < 0.5.%% USAGE%%% WARNINGS%%% ERRORS%%% EXAMPLE%%% NOTES%%% BUGS%%% TODO%%% ALGORITHM%%% REFERENCES%%% SEE ALSO%%% TOOLBOX%%% CATEGORY%%% AUTHOR%   Charlie Cornish%% CREATION DATE%%% COPYRIGHT%%% CREDITS%%% REVISION%   $Revision: 612 $%%***%   $Id: wmtsa_gen_fd_sdf_acvs.m 612 2005-10-28 21:42:24Z ccornish $defaults.sigma_squared = 1;  usage_str = ['Usage:  [s_X] = ', mfilename, ...             '(N, delta, [sigma_squared])'];  [err_id, errmsg] =  nargerr(mfilename, nargin, [2:3], nargout, [0:1], 1, usage_str);if (err_id)  error('WMTSA:InvalidNumArguments', errmsg);endif (~exist('sigma_squared', 'var') || isempty(sigma_squared))  sigma_squared = defaults.sigma_squared;ends_X = FD_sdf_acvs(N, delta, sigma_squared);returnfunction s_X = FD_sdf_acvs(N, delta, sigma_squared)  % Make delta into a row vector  delta = reshape(delta, [1, length(delta)]);  % Make s_X into a N x length(delta) matrix  s_X = zeros(N, length(delta));  %  s_X(1,:) = sigma_squared * (gamma(1-2*delta) ./ gamma(1-delta).^2);  s_X(1,:) = 1 * sigma_squared;    % Equation 284d  for (itau = 2:N)    tau = itau - 1;    s_X(itau,:) = s_X(itau-1,:) .* (tau + delta - 1) ./ (tau - delta);  end    % s_X is real-valued and symmeteric, i.e. s_X(-tau) = s_X(tau)  dim = 1;  s_X = cat(dim, flipdim(s_X(2:N,:),dim), s_X);  return    

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -