⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 modwt_wcov_functionality_tcase.m

📁 时间序列分析中很用的源码,书的原名为时间序列分析的小波方法.
💻 M
字号:
function tc = modwt_wcov_functionality_tcase% modwt_wcov_functionality_tcase -- munit test case to test modwt_wcov.%%****f*  wmtsa.Tests.dwt/modwt_wcov_functionality_tcase%% NAME%   modwt_wcov_functionality_tcase -- munit test case to test modwt_wcov.%% USAGE%   run_tcase('modwt_wcov_functionality_tcase')%% INPUTS%%% OUTPUTS%   tc            = tcase structure for modwt_wcov_functionality testcase.%% SIDE EFFECTS%%% DESCRIPTION%%% SEE ALSO%   modwt_wcov%% AUTHOR%   Charlie Cornish%% CREATION DATE%   2004-06-24%% COPYRIGHT%%% CREDITS%%% REVISION%   $Revision: 612 $%%***%   $Id: modwt_wcov_functionality_tcase.m 612 2005-10-28 21:42:24Z ccornish $  tc = MU_tcase_new(mfilename);tc = MU_tcase_add_test(tc, @test_normal_default);tc = MU_tcase_add_test(tc, @test_insufficient_num_arguments);tc = MU_tcase_add_test(tc, @test_invalid_ci_method);tc = MU_tcase_add_test(tc, @test_invalid_estimator);tc = MU_tcase_add_test(tc, @test_valid_estimator_but_no_required_wavelet);tc = MU_tcase_add_test(tc, @test_biased_estimator);tc = MU_tcase_add_test(tc, @test_unbiased_estimator);tc = MU_tcase_add_test(tc, @test_weaklybiased_estimator);returnfunction test_normal_default(mode, varargin)% test_normal_default  -- Smoke test:  Normal execution, default parameters  [X, x_att] = wmtsa_data('ecg');  wtfname = 'la8';  J0 = 6;  boundary = 'reflection';  Y = X;  [WJtX, VJtX] = modwt(X, wtfname, J0, boundary);  [WJtY, VJtY] = modwt(X, wtfname, J0, boundary);  [wcov] = modwt_wcov(WJtX, WJtY);returnfunction test_insufficient_num_arguments(mode, varargin)% test_insufficient_num_arguments -- Expected error: Insufficient number of Arguments  [X, x_att] = wmtsa_data('ecg');  wtfname = 'la8';  J0 = 6;  boundary = 'reflection';  Y = X;  [WJtX, VJ0tX] = modwt(X, wtfname, J0, boundary);  [WJtY, VJ0tY] = modwt(X, wtfname, J0, boundary);  try    [wcov] = modwt_wcov;  catch    [errmsg, msg_id] = lasterr;    MU_assert_error('MATLAB:nargchk:notEnoughInputs', msg_id, '', mode);  end  try    [wcov] = modwt_wcov(WJtX);  catch    [errmsg, msg_id] = lasterr;    MU_assert_error('MATLAB:nargchk:notEnoughInputs', msg_id, '', mode);  endreturnfunction test_invalid_ci_method(mode)  % Test Description:    %    Expected error:  WMTSA:WCOV:InvalidCIMethod  [X, x_att] = wmtsa_data('ecg');  wtfname = 'la8';  J0 = 6;  boundary = 'reflection';  [WJtX, VJ0tX] = modwt(X, wtfname, J0, boundary);  [WJtY, VJ0tY] = modwt(X, wtfname, J0, boundary);  try    [wcov, CI_wcov] = modwt_wcov(WJtX, WJtY, 'not_a_ci_method');  catch    [errmsg, msg_id] = lasterr;    MU_assert_error('WMTSA:WCOV:InvalidCIMethod', msg_id);  endreturnfunction test_invalid_estimator(mode)  % Test Description:    %    Expected error:  WMTSA:WCOV:InvalidEstimator  [X, x_att] = wmtsa_data('ecg');  wtfname = 'la8';  J0 = 6;  boundary = 'reflection';  [WJtX, VJ0tX] = modwt(X, wtfname, J0, boundary);  [WJtY, VJ0tY] = modwt(X, wtfname, J0, boundary);  try    [wcov, CI_wcov] = modwt_wcov(WJtX, WJtY, '', 'not_a_estimator');  catch    [errmsg, msg_id] = lasterr;    MU_assert_error('WMTSA:WCOV:InvalidEstimator', msg_id);  endreturnfunction test_valid_estimator_but_no_required_wavelet(mode)  % Test Description:    %    Expected error:  WMTSA:WaveletArgumentRequired  [X, x_att] = wmtsa_data('ecg');  wtfname = 'la8';  J0 = 6;  boundary = 'reflection';  [WJtX, VJ0tX] = modwt(X, wtfname, J0, boundary);  [WJtY, VJ0tY] = modwt(X, wtfname, J0, boundary);  try    [wcov, CI_wcov] = modwt_wcov(WJtY, WJtY, '', 'unbiased');  catch    [errmsg, msg_id] = lasterr;    MU_assert_error('WMTSA:missingRequiredArgument', msg_id);  endreturnfunction test_biased_estimator(mode)  % Test Description:    %    Smoke test:  Normal execution, default parameters  [X, x_att] = wmtsa_data('ecg');  wtfname = 'la8';  J0 = 6;  boundary = 'reflection';  Y = X;  [WJtX, VJ0tX] = modwt(X, wtfname, J0, boundary);  [WJtY, VJ0tY] = modwt(X, wtfname, J0, boundary);  ci_method = 'gaussian';  estimator = 'biased';  [wcov, CI_wcov, VARgamma] = modwt_wcov(WJtX, WJtY, ci_method, estimator, wtfname);returnfunction test_unbiased_estimator(mode)  % Test Description:    %    Smoke test:  Normal execution, default parameters  [X, x_att] = wmtsa_data('ecg');  wtfname = 'la8';  J0 = 6;  boundary = 'reflection';  Y = X;  [WJtX, VJ0tX] = modwt(X, wtfname, J0, boundary);  [WJtY, VJ0tY] = modwt(X, wtfname, J0, boundary);  ci_method = 'gaussian';  estimator = 'unbiased';  [wcov, CI_wcov, VARgamma] = modwt_wcov(WJtX, WJtY, ci_method, estimator, wtfname);returnfunction test_weaklybiased_estimator(mode)  % Test Description:    %    Smoke test:  Normal execution, default parameters  [X, x_att] = wmtsa_data('ecg');  wtfname = 'la8';  J0 = 6;  boundary = 'reflection';  Y = X;  [WJtX, VJ0tX] = modwt(X, wtfname, J0, boundary);  [WJtY, VJ0tY] = modwt(X, wtfname, J0, boundary);  ci_method = 'gaussian';  estimator = 'weaklybiased';  [wcov, CI_wcov, VARgamma] = modwt_wcov(WJtX, WJtY, ci_method, estimator, wtfname);return

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -