⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ex1d1.m

📁 新的神经网络算法源程序
💻 M
字号:
%==============================================================%    Ex1d1: An example for using WaveNet,  1-D Interpolation%==============================================================% By Qinghua Zhang. March, 1994.help ex1d1echo on% The training data%===================% Input patternsx = [-0.9588   -0.8611   -0.7614   -0.6790   -0.6074   -0.4920   -0.3364 ...     -0.2987   -0.1644   -0.1520    0.0473    0.1727    0.1766    0.2596 ...      0.3616    0.5276    0.5697    0.6961    0.7437    0.9412    0.9696]';% Output patternsy = [-0.9602   -0.5770   -0.0729    0.3771    0.6405    0.6600    0.4609 ...      0.1336   -0.2013   -0.4344   -0.5000   -0.3930   -0.1647    0.0988 ...      0.3072    0.3960    0.3449    0.1816   -0.0312   -0.2189   -0.3201]';% The data are depicted in the graphics window.clf; plot(x,y,'o'); xlabel('x'); ylabel('y'); title('The data to be interpolated');% We are going to use a WaveNet to interpolate the data.% You may set the number of wavelets in the network to 3% or choose it on-line with the aid of the FPE criterion.% Call the training procedure%=============================Key = keymenu('Make your choice','Use 3 wavelets','On-line choice');if Key==1  th = wnetreg(y, x, 3, 20, 2); % Use 3 wavelets, 20 iterations,                                          % Initialization mode 2else  th = wnetreg(y, x, [], 20, 2); % Number of wavelets not determined.end% Examine the result of the interpolation%=========================================% Evaluate the network on a finer x-sequencexg = (-1:.01:1)';yg = wavenet(xg, th);plot(x,y,'o', xg,yg); xlabel('x'); ylabel('y');% The result of the interpolation is ploted in the graphics window.echo off

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -