📄 lms.m
字号:
function [test_targets, updates] = LMS(train_patterns, train_targets, test_patterns, params)
% Classify using the least means square algorithm
% Inputs:
% train_patterns - Train patterns
% train_targets - Train targets
% test_patterns - Test patterns
% param - [Maximum iteration Theta (Convergence criterion), Convergence rate]
%
% Outputs
% test_targets - Predicted targets
% updates - Updates throughout the learning iterations
[c, n] = size(train_patterns);
[Max_iter, theta, eta] = process_params(params);
y = [train_patterns ; ones(1,n)];
train_zero = find(train_targets == 0);
%Preprocessing
processed_patterns = y;
processed_patterns(:,train_zero) = -processed_patterns(:,train_zero);
b = 2*train_targets - 1;
%Initial weights
a = sum(processed_patterns')';
iter = 1;
k = 0;
update = 1e3;
updates = 1e3;
while ((sum(abs(update)) > theta) & (iter < Max_iter))
iter = iter + 1;
%k <- (k+1) mod n
k = mod(k+1,n);
if (k == 0),
k = n;
end
% a <- a + eta*(b-a'*Yk)*Yk'
update = eta*(b(k) - a'*y(:,k))'*y(:,k);
a = a + update;
updates(iter) = sum(abs(update));
end
if (iter == Max_iter),
disp(['Maximum iteration (' num2str(Max_iter) ') reached']);
else
disp(['Did ' num2str(iter) ' iterations'])
end
%Classify the test patterns
test_targets = a'*[test_patterns; ones(1, size(test_patterns,2))];
if (length(unique(train_targets)) == 2)
test_targets = test_targets > 0;
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -