📄 bimsec.m
字号:
function [patterns, targets, label, J] = BIMSEC(train_patterns, train_targets, params, plot_on)
%Reduce the number of data points using the basic iterative MSE clustering algorithm
%Inputs:
% train_patterns - Input patterns
% train_targets - Input targets
% params - Algorithm parameters: [Number of output data points, Number of attempts]
% plot_on - Plot stages of the algorithm
%
%Outputs
% patterns - New patterns
% targets - New targets
% label - The labels given for each of the original patterns
if (nargin < 4),
plot_on = 0;
end
[Nmu, Ntries] = process_params(params);
[D,L] = size(train_patterns);
dist = zeros(Nmu,L);
label = zeros(1,L);
Uc = unique(train_targets);
%Initialize the mu's
mu = randn(D,Nmu);
mu = sqrtm(cov(train_patterns',1))*mu + mean(train_patterns')'*ones(1,Nmu);
ro = zeros(1,Nmu);
n = zeros(1,Nmu);
Ji = zeros(1,Nmu);
J = 1;
iter = 1;
if (Nmu == 1),
mu = mean(train_patterns')';
label = ones(1,L);
else
%Assign each example to one of the mu's
%Compute distances
dist = zeros(Nmu, L);
for i = 1:Nmu,
dist(i,:) = sqrt(sum((mu(:,i)*ones(1,L) - train_patterns).^2));
end
[m, label] = min(dist);
n = hist(label, Nmu);
while (Ntries > 0),
iter = iter + 1;
J(iter) = 0;
%Select a sample x_hat
r = randperm(L);
x_hat = train_patterns(:,r(1));
%i <- argmin||mi - x_hat||
dist = sqrt(sum((mu - x_hat * ones(1,Nmu)).^2));
i = find(dist == min(dist));
%Compute ro if n(i) ~= 1
if (n(i) ~=1),
for j = 1:Nmu,
if (i ~= j),
ro(j) = n(j)/(n(j)+1)*dist(j)^2;
else
ro(j) = n(j)/(n(j)-1)*dist(j)^2;
end
end
%Transfer x_hat if needed
[m, k] = find(min(ro) == ro);
if (k ~= i),
label(r(1)) = k;
n(i) = n(i) - 1;
n(k) = n(k) + 1;
%Recompute Je, and the mu's
for j = 1:Nmu,
indexes = find(label == j);
mu(:,j) = mean(train_patterns(:,indexes)')';
Ji(j) = sum(sum((mu(:,j)*ones(1,length(indexes)) - train_patterns(:,indexes)).^2));
end
J(iter) = sum(Ji);
end
end
%Plot the centers during the process
plot_process(mu, plot_on)
if (J(iter) == J(iter-1)),
Ntries = Ntries - 1;
end
end
end
%Classify all the patterns to one of the mu's (1-NN)
dist = zeros(Nmu,L);
for i = 1:Nmu,
dist(i,:) = sum((train_patterns - mu(:,i)*ones(1,L)).^2);
end
%Label the points
[m,label] = min(dist);
targets = zeros(1,Nmu);
for i = 1:Nmu,
N = hist(train_targets(:,find(label == i)), Uc);
[m, max_l] = max(N);
targets(i) = Uc(max_l);
end
patterns = mu;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -