📄 ml_diag.m
字号:
function test_targets = ML_diag(train_patterns, train_targets, test_patterns, AlgorithmParameters)
% Classify using the maximum likelyhood algorithm with diagonal covariance matrices
% Inputs:
% train_patterns - Train patterns
% train_targets - Train targets
% test_patterns - Test patterns
% params - Unused
%
% Outputs
% test_targets - Predicted targets
Uclasses = unique(train_targets);
for i = 1:length(Uclasses),
indices = find(train_targets == Uclasses(i));
%Estimate mean and covariance
param_struct(i).mu = mean(train_patterns(:,indices)');
param_struct(i).sigma = cov(train_patterns(:,indices)',1).*eye(size(train_patterns, 1));
param_struct(i).p = length(indices)/length(train_targets);
param_struct(i).w = 1/length(Uclasses);
param_struct(i).type = 'Gaussian';
end
%Classify test patterns
test_targets = classify_paramteric(param_struct, test_patterns);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -