📄 matrix3.cpp
字号:
return false;
}
}
//----------------------------------------------------------------------------
bool Matrix3::toEulerAnglesZYX (float& rfZAngle, float& rfYAngle,
float& rfXAngle) const {
// rot = cy*cz cz*sx*sy-cx*sz cx*cz*sy+sx*sz
// cy*sz cx*cz+sx*sy*sz -cz*sx+cx*sy*sz
// -sy cy*sx cx*cy
if ( elt[2][0] < 1.0 ) {
if ( elt[2][0] > -1.0 ) {
rfZAngle = atan2f(elt[1][0], elt[0][0]);
rfYAngle = asinf(-(double)elt[2][1]);
rfXAngle = atan2f(elt[2][1], elt[2][2]);
return true;
} else {
// WARNING. Not unique. ZA - XA = -atan2(r01,r02)
rfZAngle = -G3D::aTan2(elt[0][1], elt[0][2]);
rfYAngle = (float)G3D_HALF_PI;
rfXAngle = 0.0f;
return false;
}
} else {
// WARNING. Not unique. ZA + XA = atan2(-r01,-r02)
rfZAngle = G3D::aTan2( -elt[0][1], -elt[0][2]);
rfYAngle = -(float)G3D_HALF_PI;
rfXAngle = 0.0f;
return false;
}
}
//----------------------------------------------------------------------------
Matrix3 Matrix3::fromEulerAnglesXYZ (float fYAngle, float fPAngle,
float fRAngle) {
float fCos, fSin;
fCos = cosf(fYAngle);
fSin = sinf(fYAngle);
Matrix3 kXMat(1.0f, 0.0f, 0.0f, 0.0f, fCos, -fSin, 0.0, fSin, fCos);
fCos = cosf(fPAngle);
fSin = sinf(fPAngle);
Matrix3 kYMat(fCos, 0.0f, fSin, 0.0f, 1.0f, 0.0f, -fSin, 0.0f, fCos);
fCos = cosf(fRAngle);
fSin = sinf(fRAngle);
Matrix3 kZMat(fCos, -fSin, 0.0f, fSin, fCos, 0.0f, 0.0f, 0.0f, 1.0f);
return kXMat * (kYMat * kZMat);
}
//----------------------------------------------------------------------------
Matrix3 Matrix3::fromEulerAnglesXZY (float fYAngle, float fPAngle,
float fRAngle) {
float fCos, fSin;
fCos = cosf(fYAngle);
fSin = sinf(fYAngle);
Matrix3 kXMat(1.0, 0.0, 0.0, 0.0, fCos, -fSin, 0.0, fSin, fCos);
fCos = cosf(fPAngle);
fSin = sinf(fPAngle);
Matrix3 kZMat(fCos, -fSin, 0.0, fSin, fCos, 0.0, 0.0, 0.0, 1.0);
fCos = cosf(fRAngle);
fSin = sinf(fRAngle);
Matrix3 kYMat(fCos, 0.0, fSin, 0.0, 1.0, 0.0, -fSin, 0.0, fCos);
return kXMat * (kZMat * kYMat);
}
//----------------------------------------------------------------------------
Matrix3 Matrix3::fromEulerAnglesYXZ(
float fYAngle,
float fPAngle,
float fRAngle) {
float fCos, fSin;
fCos = cos(fYAngle);
fSin = sin(fYAngle);
Matrix3 kYMat(fCos, 0.0f, fSin, 0.0f, 1.0f, 0.0f, -fSin, 0.0f, fCos);
fCos = cos(fPAngle);
fSin = sin(fPAngle);
Matrix3 kXMat(1.0f, 0.0f, 0.0f, 0.0f, fCos, -fSin, 0.0f, fSin, fCos);
fCos = cos(fRAngle);
fSin = sin(fRAngle);
Matrix3 kZMat(fCos, -fSin, 0.0f, fSin, fCos, 0.0f, 0.0f, 0.0f, 1.0f);
return kYMat * (kXMat * kZMat);
}
//----------------------------------------------------------------------------
Matrix3 Matrix3::fromEulerAnglesYZX(
float fYAngle,
float fPAngle,
float fRAngle) {
float fCos, fSin;
fCos = cos(fYAngle);
fSin = sin(fYAngle);
Matrix3 kYMat(fCos, 0.0f, fSin, 0.0f, 1.0f, 0.0f, -fSin, 0.0f, fCos);
fCos = cos(fPAngle);
fSin = sin(fPAngle);
Matrix3 kZMat(fCos, -fSin, 0.0f, fSin, fCos, 0.0f, 0.0f, 0.0f, 1.0f);
fCos = cos(fRAngle);
fSin = sin(fRAngle);
Matrix3 kXMat(1.0f, 0.0f, 0.0f, 0.0f, fCos, -fSin, 0.0f, fSin, fCos);
return kYMat * (kZMat * kXMat);
}
//----------------------------------------------------------------------------
Matrix3 Matrix3::fromEulerAnglesZXY (float fYAngle, float fPAngle,
float fRAngle) {
float fCos, fSin;
fCos = cos(fYAngle);
fSin = sin(fYAngle);
Matrix3 kZMat(fCos, -fSin, 0.0, fSin, fCos, 0.0, 0.0, 0.0, 1.0);
fCos = cos(fPAngle);
fSin = sin(fPAngle);
Matrix3 kXMat(1.0, 0.0, 0.0, 0.0, fCos, -fSin, 0.0, fSin, fCos);
fCos = cos(fRAngle);
fSin = sin(fRAngle);
Matrix3 kYMat(fCos, 0.0, fSin, 0.0, 1.0, 0.0, -fSin, 0.0, fCos);
return kZMat * (kXMat * kYMat);
}
//----------------------------------------------------------------------------
Matrix3 Matrix3::fromEulerAnglesZYX (float fYAngle, float fPAngle,
float fRAngle) {
float fCos, fSin;
fCos = cos(fYAngle);
fSin = sin(fYAngle);
Matrix3 kZMat(fCos, -fSin, 0.0, fSin, fCos, 0.0, 0.0, 0.0, 1.0);
fCos = cos(fPAngle);
fSin = sin(fPAngle);
Matrix3 kYMat(fCos, 0.0, fSin, 0.0, 1.0, 0.0, -fSin, 0.0, fCos);
fCos = cos(fRAngle);
fSin = sin(fRAngle);
Matrix3 kXMat(1.0, 0.0, 0.0, 0.0, fCos, -fSin, 0.0, fSin, fCos);
return kZMat * (kYMat * kXMat);
}
//----------------------------------------------------------------------------
void Matrix3::tridiagonal (float afDiag[3], float afSubDiag[3]) {
// Householder reduction T = Q^t M Q
// Input:
// mat, symmetric 3x3 matrix M
// Output:
// mat, orthogonal matrix Q
// diag, diagonal entries of T
// subd, subdiagonal entries of T (T is symmetric)
float fA = elt[0][0];
float fB = elt[0][1];
float fC = elt[0][2];
float fD = elt[1][1];
float fE = elt[1][2];
float fF = elt[2][2];
afDiag[0] = fA;
afSubDiag[2] = 0.0;
if ( G3D::abs(fC) >= EPSILON ) {
float fLength = sqrt(fB * fB + fC * fC);
float fInvLength = 1.0 / fLength;
fB *= fInvLength;
fC *= fInvLength;
float fQ = 2.0 * fB * fE + fC * (fF - fD);
afDiag[1] = fD + fC * fQ;
afDiag[2] = fF - fC * fQ;
afSubDiag[0] = fLength;
afSubDiag[1] = fE - fB * fQ;
elt[0][0] = 1.0;
elt[0][1] = 0.0;
elt[0][2] = 0.0;
elt[1][0] = 0.0;
elt[1][1] = fB;
elt[1][2] = fC;
elt[2][0] = 0.0;
elt[2][1] = fC;
elt[2][2] = -fB;
} else {
afDiag[1] = fD;
afDiag[2] = fF;
afSubDiag[0] = fB;
afSubDiag[1] = fE;
elt[0][0] = 1.0;
elt[0][1] = 0.0;
elt[0][2] = 0.0;
elt[1][0] = 0.0;
elt[1][1] = 1.0;
elt[1][2] = 0.0;
elt[2][0] = 0.0;
elt[2][1] = 0.0;
elt[2][2] = 1.0;
}
}
//----------------------------------------------------------------------------
bool Matrix3::qLAlgorithm (float afDiag[3], float afSubDiag[3]) {
// QL iteration with implicit shifting to reduce matrix from tridiagonal
// to diagonal
for (int i0 = 0; i0 < 3; i0++) {
const int iMaxIter = 32;
int iIter;
for (iIter = 0; iIter < iMaxIter; iIter++) {
int i1;
for (i1 = i0; i1 <= 1; i1++) {
float fSum = G3D::abs(afDiag[i1]) +
G3D::abs(afDiag[i1 + 1]);
if ( G3D::abs(afSubDiag[i1]) + fSum == fSum )
break;
}
if ( i1 == i0 )
break;
float fTmp0 = (afDiag[i0 + 1] - afDiag[i0]) / (2.0 * afSubDiag[i0]);
float fTmp1 = sqrt(fTmp0 * fTmp0 + 1.0);
if ( fTmp0 < 0.0 )
fTmp0 = afDiag[i1] - afDiag[i0] + afSubDiag[i0] / (fTmp0 - fTmp1);
else
fTmp0 = afDiag[i1] - afDiag[i0] + afSubDiag[i0] / (fTmp0 + fTmp1);
float fSin = 1.0;
float fCos = 1.0;
float fTmp2 = 0.0;
for (int i2 = i1 - 1; i2 >= i0; i2--) {
float fTmp3 = fSin * afSubDiag[i2];
float fTmp4 = fCos * afSubDiag[i2];
if (G3D::abs(fTmp3) >= G3D::abs(fTmp0)) {
fCos = fTmp0 / fTmp3;
fTmp1 = sqrt(fCos * fCos + 1.0);
afSubDiag[i2 + 1] = fTmp3 * fTmp1;
fSin = 1.0 / fTmp1;
fCos *= fSin;
} else {
fSin = fTmp3 / fTmp0;
fTmp1 = sqrt(fSin * fSin + 1.0);
afSubDiag[i2 + 1] = fTmp0 * fTmp1;
fCos = 1.0 / fTmp1;
fSin *= fCos;
}
fTmp0 = afDiag[i2 + 1] - fTmp2;
fTmp1 = (afDiag[i2] - fTmp0) * fSin + 2.0 * fTmp4 * fCos;
fTmp2 = fSin * fTmp1;
afDiag[i2 + 1] = fTmp0 + fTmp2;
fTmp0 = fCos * fTmp1 - fTmp4;
for (int iRow = 0; iRow < 3; iRow++) {
fTmp3 = elt[iRow][i2 + 1];
elt[iRow][i2 + 1] = fSin * elt[iRow][i2] +
fCos * fTmp3;
elt[iRow][i2] = fCos * elt[iRow][i2] -
fSin * fTmp3;
}
}
afDiag[i0] -= fTmp2;
afSubDiag[i0] = fTmp0;
afSubDiag[i1] = 0.0;
}
if ( iIter == iMaxIter ) {
// should not get here under normal circumstances
return false;
}
}
return true;
}
//----------------------------------------------------------------------------
void Matrix3::eigenSolveSymmetric (float afEigenvalue[3],
Vector3 akEigenvector[3]) const {
Matrix3 kMatrix = *this;
float afSubDiag[3];
kMatrix.tridiagonal(afEigenvalue, afSubDiag);
kMatrix.qLAlgorithm(afEigenvalue, afSubDiag);
for (int i = 0; i < 3; i++) {
akEigenvector[i][0] = kMatrix[0][i];
akEigenvector[i][1] = kMatrix[1][i];
akEigenvector[i][2] = kMatrix[2][i];
}
// make eigenvectors form a right--handed system
Vector3 kCross = akEigenvector[1].cross(akEigenvector[2]);
float fDet = akEigenvector[0].dot(kCross);
if ( fDet < 0.0 ) {
akEigenvector[2][0] = - akEigenvector[2][0];
akEigenvector[2][1] = - akEigenvector[2][1];
akEigenvector[2][2] = - akEigenvector[2][2];
}
}
//----------------------------------------------------------------------------
void Matrix3::tensorProduct (const Vector3& rkU, const Vector3& rkV,
Matrix3& rkProduct) {
for (int iRow = 0; iRow < 3; iRow++) {
for (int iCol = 0; iCol < 3; iCol++) {
rkProduct[iRow][iCol] = rkU[iRow] * rkV[iCol];
}
}
}
//----------------------------------------------------------------------------
// Runs in 52 cycles on AMD, 76 cycles on Intel Centrino
//
// The loop unrolling is necessary for performance.
// I was unable to improve performance further by flattening the matrices
// into float*'s instead of 2D arrays.
//
// -morgan
void Matrix3::_mul(const Matrix3& A, const Matrix3& B, Matrix3& out) {
const float* ARowPtr = A.elt[0];
float* outRowPtr = out.elt[0];
outRowPtr[0] =
ARowPtr[0] * B.elt[0][0] +
ARowPtr[1] * B.elt[1][0] +
ARowPtr[2] * B.elt[2][0];
outRowPtr[1] =
ARowPtr[0] * B.elt[0][1] +
ARowPtr[1] * B.elt[1][1] +
ARowPtr[2] * B.elt[2][1];
outRowPtr[2] =
ARowPtr[0] * B.elt[0][2] +
ARowPtr[1] * B.elt[1][2] +
ARowPtr[2] * B.elt[2][2];
ARowPtr = A.elt[1];
outRowPtr = out.elt[1];
outRowPtr[0] =
ARowPtr[0] * B.elt[0][0] +
ARowPtr[1] * B.elt[1][0] +
ARowPtr[2] * B.elt[2][0];
outRowPtr[1] =
ARowPtr[0] * B.elt[0][1] +
ARowPtr[1] * B.elt[1][1] +
ARowPtr[2] * B.elt[2][1];
outRowPtr[2] =
ARowPtr[0] * B.elt[0][2] +
ARowPtr[1] * B.elt[1][2] +
ARowPtr[2] * B.elt[2][2];
ARowPtr = A.elt[2];
outRowPtr = out.elt[2];
outRowPtr[0] =
ARowPtr[0] * B.elt[0][0] +
ARowPtr[1] * B.elt[1][0] +
ARowPtr[2] * B.elt[2][0];
outRowPtr[1] =
ARowPtr[0] * B.elt[0][1] +
ARowPtr[1] * B.elt[1][1] +
ARowPtr[2] * B.elt[2][1];
outRowPtr[2] =
ARowPtr[0] * B.elt[0][2] +
ARowPtr[1] * B.elt[1][2] +
ARowPtr[2] * B.elt[2][2];
}
//----------------------------------------------------------------------------
void Matrix3::_transpose(const Matrix3& A, Matrix3& out) {
out[0][0] = A.elt[0][0];
out[0][1] = A.elt[1][0];
out[0][2] = A.elt[2][0];
out[1][0] = A.elt[0][1];
out[1][1] = A.elt[1][1];
out[1][2] = A.elt[2][1];
out[2][0] = A.elt[0][2];
out[2][1] = A.elt[1][2];
out[2][2] = A.elt[2][2];
}
//-----------------------------------------------------------------------------
std::string Matrix3::toString() const {
return G3D::format("[%g, %g, %g; %g, %g, %g; %g, %g, %g]",
elt[0][0], elt[0][1], elt[0][2],
elt[1][0], elt[1][1], elt[1][2],
elt[2][0], elt[2][1], elt[2][2]);
}
} // namespace
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -