📄 aabox.cpp
字号:
/**
@file AABox.cpp
@maintainer Morgan McGuire, matrix@graphics3d.com
@created 2004-01-10
@edited 2006-01-11
*/
#include "G3D/platform.h"
# if defined(_MSC_VER) && (_MSC_VER <= 1200)
// VC6 std:: has signed/unsigned problems
# pragma warning (disable : 4018)
# endif
#include <assert.h>
#include "G3D/AABox.h"
#include "G3D/Box.h"
#include "G3D/Plane.h"
#include "G3D/Sphere.h"
namespace G3D {
Box AABox::toBox() const {
return Box(lo, hi);
}
void AABox::split(const Vector3::Axis& axis, float location, AABox& low, AABox& high) const {
// Low, medium, and high along the chosen axis
float L = std::min(location, lo[axis]);
float M = std::min(std::max(location, lo[axis]), hi[axis]);
float H = std::max(location, hi[axis]);
// Copy over this box.
high = low = *this;
// Now move the split points along the special axis
low.lo[axis] = L;
low.hi[axis] = M;
high.lo[axis] = M;
high.hi[axis] = H;
}
#if 0
Vector3 AABox::randomSurfacePoint() const {
Vector3 extent = hi - lo;
float aXY = extent.x * extent.y;
float aYZ = extent.y * extent.z;
float aZX = extent.z * extent.x;
float r = (float)random(0, aXY + aYZ + aZX);
// Choose evenly between positive and negative face planes
float d = ((float)random(0, 1) < 0.5f) ? 0.0f : 1.0f;
// The probability of choosing a given face is proportional to
// its area.
if (r < aXY) {
return
lo +
Vector3(
(float)random(0, extent.x),
(float)random(0, extent.y),
d * extent.z);
} else if (r < aYZ) {
return
lo +
Vector3(
d * extent.x,
(float)random(0, extent.y),
(float)random(0, extent.z));
} else {
return
lo +
Vector3(
(float)random(0, extent.x),
d * extent.y,
(float)random(0, extent.z));
}
}
Vector3 AABox::randomInteriorPoint() const {
return Vector3(
(float)random(lo.x, hi.x),
(float)random(lo.y, hi.y),
(float)random(lo.z, hi.z));
}
#endif
bool AABox::intersects(const AABox& other) const {
// Must be overlap along all three axes.
// Try to find a separating axis.
for (int a = 0; a < 3; ++a) {
// |--------|
// |------|
if ((lo[a] > other.hi[a]) ||
(hi[a] < other.lo[a])) {
return false;
}
}
return true;
}
bool AABox::culledBy(
const Array<Plane>& plane,
int& cullingPlaneIndex,
const uint32 inMask,
uint32& outMask) const {
return culledBy(plane.getCArray(), plane.size(), cullingPlaneIndex, inMask, outMask);
}
bool AABox::culledBy(
const Array<Plane>& plane,
int& cullingPlaneIndex,
const uint32 inMask) const {
return culledBy(plane.getCArray(), plane.size(), cullingPlaneIndex, inMask);
}
int AABox::dummy = 0;
bool AABox::culledBy(
const class Plane* plane,
int numPlanes,
int& cullingPlane,
const uint32 _inMask,
uint32& childMask) const {
uint32 inMask = _inMask;
assert(numPlanes < 31);
childMask = 0;
const bool finite =
(abs(lo.x) < G3D::inf()) &&
(abs(hi.x) < G3D::inf()) &&
(abs(lo.y) < G3D::inf()) &&
(abs(hi.y) < G3D::inf()) &&
(abs(lo.z) < G3D::inf()) &&
(abs(hi.z) < G3D::inf());
// See if there is one plane for which all of the
// vertices are in the negative half space.
for (int p = 0; p < numPlanes; p++) {
// Only test planes that are not masked
if ((inMask & 1) != 0) {
Vector3 corner;
int numContained = 0;
int v = 0;
// We can early-out only if we have found one point on each
// side of the plane (i.e. if we are straddling). That
// occurs when (numContained < v) && (numContained > 0)
for (v = 0; (v < 8) && ((numContained == v) || (numContained == 0)); ++v) {
// Unrolling these 3 if's into a switch decreases performance
// by about 2x
corner.x = (v & 1) ? hi.x : lo.x;
corner.y = (v & 2) ? hi.y : lo.y;
corner.z = (v & 4) ? hi.z : lo.z;
if (finite) { // this branch is highly predictable
if (plane[p].halfSpaceContainsFinite(corner)) {
++numContained;
}
} else {
if (plane[p].halfSpaceContains(corner)) {
++numContained;
}
}
}
if (numContained == 0) {
// Plane p culled the box
cullingPlane = p;
// The caller should not recurse into the children,
// since the parent is culled. If they do recurse,
// make them only test against this one plane, which
// will immediately cull the volume.
childMask = 1 << p;
return true;
} else if (numContained < v) {
// The bounding volume straddled the plane; we have
// to keep testing against this plane
childMask |= (1 << p);
}
}
// Move on to the next bit.
inMask = inMask >> 1;
}
// None of the planes could cull this box
cullingPlane = -1;
return false;
}
bool AABox::culledBy(
const class Plane* plane,
int numPlanes,
int& cullingPlane,
const uint32 _inMask) const {
uint32 inMask = _inMask;
assert(numPlanes < 31);
const bool finite =
(abs(lo.x) < G3D::inf()) &&
(abs(hi.x) < G3D::inf()) &&
(abs(lo.y) < G3D::inf()) &&
(abs(hi.y) < G3D::inf()) &&
(abs(lo.z) < G3D::inf()) &&
(abs(hi.z) < G3D::inf());
// See if there is one plane for which all of the
// vertices are in the negative half space.
for (int p = 0; p < numPlanes; p++) {
// Only test planes that are not masked
if ((inMask & 1) != 0) {
bool culled = true;
Vector3 corner;
int v;
// Assume this plane culls all points. See if there is a point
// not culled by the plane... early out when at least one point
// is in the positive half space.
for (v = 0; (v < 8) && culled; ++v) {
// Unrolling these 3 if's into a switch decreases performance
// by about 2x
corner.x = (v & 1) ? hi.x : lo.x;
corner.y = (v & 2) ? hi.y : lo.y;
corner.z = (v & 4) ? hi.z : lo.z;
if (finite) { // this branch is highly predictable
culled = ! plane[p].halfSpaceContainsFinite(corner);
} else {
culled = ! plane[p].halfSpaceContains(corner);
}
}
if (culled) {
// Plane p culled the box
cullingPlane = p;
return true;
}
}
// Move on to the next bit.
inMask = inMask >> 1;
}
// None of the planes could cull this box
cullingPlane = -1;
return false;
}
bool AABox::intersects(const class Sphere& sphere) const {
double d = 0;
//find the square of the distance
//from the sphere to the box
for (int i = 0; i < 3; ++i) {
if (sphere.center[i] < lo[i]) {
d += square(sphere.center[i] - lo[i]);
} else if (sphere.center[i] > hi[i]) {
d += square(sphere.center[i] - hi[i]);
}
}
return d <= square(sphere.radius);
}
} // namespace
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -