📄 quat.h
字号:
/**
@file Quat.h
Quaternion
@maintainer Morgan McGuire, matrix@graphics3d.com
@created 2002-01-23
@edited 2006-05-10
*/
#ifndef G3D_QUAT_H
#define G3D_QUAT_H
#include "G3D/platform.h"
#include "G3D/g3dmath.h"
#include "G3D/Vector3.h"
#include "G3D/Matrix3.h"
#include <string>
namespace G3D {
/**
Unit quaternions are used in computer graphics to represent
rotation about an axis. Any 3x3 rotation matrix can
be stored as a quaternion.
A quaternion represents the sum of a real scalar and
an imaginary vector: ix + jy + kz + w. A unit quaternion
representing a rotation by A about axis v has the form
[sin(A/2)*v, cos(A/2)]. For a unit quaternion, q.conj() == q.inverse()
is a rotation by -A about v. -q is the same rotation as q
(negate both the axis and angle).
A non-unit quaterion q represents the same rotation as
q.unitize() (Dam98 pg 28).
Although quaternion-vector operations (eg. Quat + Vector3) are
well defined, they are not supported by this class because
they typically are bugs when they appear in code.
Do not subclass.
<B>BETA API -- subject to change</B>
@cite Erik B. Dam, Martin Koch, Martin Lillholm, Quaternions, Interpolation and Animation. Technical Report DIKU-TR-98/5, Department of Computer Science, University of Copenhagen, Denmark. 1998.
*/
class Quat {
private:
// Hidden operators
bool operator<(const Quat&) const;
bool operator>(const Quat&) const;
bool operator<=(const Quat&) const;
bool operator>=(const Quat&) const;
public:
/**
q = [sin(angle / 2) * axis, cos(angle / 2)]
In Watt & Watt's notation, s = w, v = (x, y, z)
In the Real-Time Rendering notation, u = (x, y, z), w = w
*/
float x, y, z, w;
/**
Initializes to a zero degree rotation.
*/
inline Quat() : x(0), y(0), z(0), w(1) {}
Quat(
const Matrix3& rot);
inline Quat(float _x, float _y, float _z, float _w) :
x(_x), y(_y), z(_z), w(_w) {}
/** Defaults to a pure vector quaternion */
inline Quat(const Vector3& v, float _w = 0) : x(v.x), y(v.y), z(v.z), w(_w) {
}
/**
The real part of the quaternion.
*/
inline const float& real() const {
return w;
}
inline float& real() {
return w;
}
/** Note: two quats can represent the Quat::sameRotation and not be equal. */
bool fuzzyEq(const Quat& q) {
return G3D::fuzzyEq(x, q.x) && G3D::fuzzyEq(y, q.y) && G3D::fuzzyEq(z, q.z) && G3D::fuzzyEq(w, q.w);
}
/** True if these quaternions represent the same rotation (note that every rotation is
represented by two values; q and -q).
*/
bool sameRotation(const Quat& q) {
return fuzzyEq(q) || fuzzyEq(-q);
}
inline Quat operator-() const {
return Quat(-x, -y, -z, -w);
}
/**
Returns the imaginary part (x, y, z)
*/
inline const Vector3& imag() const {
return *(reinterpret_cast<const Vector3*>(this));
}
inline Vector3& imag() {
return *(reinterpret_cast<Vector3*>(this));
}
/** q = [sin(angle/2)*axis, cos(angle/2)] */
static Quat fromAxisAngleRotation(
const Vector3& axis,
float angle);
/** Returns the axis and angle of rotation represented
by this quaternion (i.e. q = [sin(angle/2)*axis, cos(angle/2)]) */
void toAxisAngleRotation(
Vector3& axis,
double& angle) const;
void toAxisAngleRotation(
Vector3& axis,
float& angle) const {
double d;
toAxisAngleRotation(axis, d);
angle = (float)d;
}
Matrix3 toRotationMatrix() const;
void toRotationMatrix(
Matrix3& rot) const;
/**
Spherical linear interpolation: linear interpolation along the
shortest (3D) great-circle route between two quaternions.
Note: Correct rotations are expected between 0 and PI in the right order.
@cite Based on Game Physics -- David Eberly pg 538-540
@param threshold Critical angle between between rotations at which
the algorithm switches to normalized lerp, which is more
numerically stable in those situations. 0.0 will always slerp.
*/
Quat slerp(
const Quat& other,
float alpha,
float threshold = 0.05f) const;
/** Normalized linear interpolation of quaternion components. */
Quat nlerp(const Quat& other, float alpha) const;
/**
Negates the imaginary part.
*/
inline Quat conj() const {
return Quat(-x, -y, -z, w);
}
inline float sum() const {
return x + y + z + w;
}
inline float average() const {
return sum() / 4.0f;
}
inline Quat operator*(float s) const {
return Quat(x * s, y * s, z * s, w * s);
}
/** @cite Based on Watt & Watt, page 360 */
friend Quat operator* (float s, const Quat& q);
inline Quat operator/(float s) const {
return Quat(x / s, y / s, z / s, w / s);
}
inline float dot(const Quat& other) const {
return (x * other.x) + (y * other.y) + (z * other.z) + (w * other.w);
}
/** Note that q<SUP>-1</SUP> = q.conj() for a unit quaternion.
@cite Dam99 page 13 */
inline Quat inverse() const {
return conj() / dot(*this);
}
Quat operator-(const Quat& other) const;
Quat operator+(const Quat& other) const;
/**
Quaternion multiplication (composition of rotations).
Note that this does not commute.
*/
Quat operator*(const Quat& other) const;
/* (*this) * other.inverse() */
Quat operator/(const Quat& other) const {
return (*this) * other.inverse();
}
/** Is the magnitude nearly 1.0? */
inline bool isUnit(float tolerance = 1e-5) const {
return abs(dot(*this) - 1.0f) < tolerance;
}
inline float magnitude() const {
return sqrtf(dot(*this));
}
inline Quat log() const {
if ((x == 0) && (y == 0) && (z == 0)) {
if (w > 0) {
return Quat(0, 0, 0, ::logf(w));
} else if (w < 0) {
// Log of a negative number. Multivalued, any number of the form
// (PI * v, ln(-q.w))
return Quat((float)G3D_PI, 0, 0, ::logf(-w));
} else {
// log of zero!
return Quat((float)nan(), (float)nan(), (float)nan(), (float)nan());
}
} else {
// Partly imaginary.
float imagLen = sqrtf(x * x + y * y + z * z);
float len = sqrtf(imagLen * imagLen + w * w);
float theta = atan2f(imagLen, (float)w);
float t = theta / imagLen;
return Quat(t * x, t * y, t * z, ::logf(len));
}
}
/** log q = [Av, 0] where q = [sin(A) * v, cos(A)].
Only for unit quaternions
debugAssertM(isUnit(), "Log only defined for unit quaternions");
// Solve for A in q = [sin(A)*v, cos(A)]
Vector3 u(x, y, z);
double len = u.magnitude();
if (len == 0.0) {
return
}
double A = atan2((double)w, len);
Vector3 v = u / len;
return Quat(v * A, 0);
}
*/
/** exp q = [sin(A) * v, cos(A)] where q = [Av, 0].
Only defined for pure-vector quaternions */
inline Quat exp() const {
debugAssertM(w == 0, "exp only defined for vector quaternions");
Vector3 u(x, y, z);
float A = u.magnitude();
Vector3 v = u / A;
return Quat(sinf(A) * v, cosf(A));
}
/**
Raise this quaternion to a power. For a rotation, this is
the effect of rotating x times as much as the original
quaterion.
Note that q.pow(a).pow(b) == q.pow(a + b)
@cite Dam98 pg 21
*/
inline Quat pow(float x) const {
return (log() * x).exp();
}
/**
@deprecated
Use toUnit()
*/
inline Quat unitize() const {
float mag2 = dot(*this);
if (G3D::fuzzyEq(mag2, 1.0f)) {
return *this;
} else {
return *this / sqrtf(mag2);
}
}
/**
Returns a unit quaterion obtained by dividing through by
the magnitude.
*/
inline Quat toUnit() const {
return unitize();
}
/**
The linear algebra 2-norm, sqrt(q dot q). This matches
the value used in Dam's 1998 tech report but differs from the
n(q) value used in Eberly's 1999 paper, which is the square of the
norm.
*/
inline float norm() const {
return magnitude();
}
// access quaternion as q[0] = q.x, q[1] = q.y, q[2] = q.z, q[3] = q.w
//
// WARNING. These member functions rely on
// (1) Quat not having virtual functions
// (2) the data packed in a 4*sizeof(float) memory block
const float& operator[] (int i) const;
float& operator[] (int i);
/** Generate uniform random unit quaternion (i.e. random "direction")
@cite From "Uniform Random Rotations", Ken Shoemake, Graphics Gems III.
*/
static Quat unitRandom();
// 2-char swizzles
Vector2 xx() const;
Vector2 yx() const;
Vector2 zx() const;
Vector2 wx() const;
Vector2 xy() const;
Vector2 yy() const;
Vector2 zy() const;
Vector2 wy() const;
Vector2 xz() const;
Vector2 yz() const;
Vector2 zz() const;
Vector2 wz() const;
Vector2 xw() const;
Vector2 yw() const;
Vector2 zw() const;
Vector2 ww() const;
// 3-char swizzles
Vector3 xxx() const;
Vector3 yxx() const;
Vector3 zxx() const;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -