📄 normal_c.m
字号:
function [s,V] = normal_c(z,rho,theta)% function NORMAL_C.M% Interpolation Method using cubic splines% Usage: [s,V] = normal_c(z,rho,theta)% Where: z = M by N matrix with samples in frequency domain% rho, theta = radius and angles of data points% s = interpolated matrix% V = vector that includes \fs32 \f4 rxo \fs22 \f0 dkx dky ii]\par
close all % Variablesbursts = size(z,1); pul_burst = size(z,2);thetav = theta(:,1).'; tv=thetav; dtheta = thetav(2) - theta(1);ac = max(thetav) - min(thetav);ca = (max(thetav) + min(thetav))/2;rho = rho.*(4*pi/3e8); %% frequency matrix in rad/mt rhov = rho(1,:); X0 = pi/(rhov(2)-rhov( 1));rhoc = linspace(min(rhov),max(rhov)*cos(ac/2),pul_burst);rhoy = linspace(min(rhov)*tan(min(tv)-ca),min(rhov)*tan(max(tv)-ca),bursts)drho = rhov(2) - rhov(1); dkx = drho; dky = abs(rhoy(2) - rhoy(1));s = zeros(size(rho)); s2 = s;%%% Cubic interpolation in x directionflops(0); zreal = zeros(bursts,pul_burst); zimag = zreal;for a = 1:bursts,projx = rhoc./cos(thetav(a) - ca);zreal(a,:) = interp1(rho(a,:)+1.5e-5,real(z(a,:)),projx,'splines');zimag(a,:) = interp1(rho(a,:)+1.5e-5,imag(z(a,:)),projx,'splines');endz = zreal + j*zimag;
%%% Cubic interpolation in y direction zreal = zeros(bursts,pul_burst); zimag = zreal; for i = 1:pul_burst, projy = rhoc(1,i).*tan(thetav - ca); zreal(:,i) = interp1(projy,real(z(:,i)),rhoy,'splines')'; zimag(:,i) = interp1(projy,imag(z(:,i)),rhoy,'splines')';ends = zreal + j*zimag; fl = flops;V=[X0 dkx dky fl];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -