📄 mcmcpoisson.cc
字号:
// MCMCpoisson.cc is C++ code to estimate a Poisson regression model with// a multivariate normal prior//// Andrew D. Martin// Dept. of Political Science// Washington University in St. Louis// admartin@wustl.edu//// Kevin M. Quinn// Dept. of Government// Harvard University// kevin_quinn@harvard.edu// // This software is distributed under the terms of the GNU GENERAL// PUBLIC LICENSE Version 2, June 1991. See the package LICENSE// file for more information.//// Copyright (C) 2004 Andrew D. Martin and Kevin M. Quinn// // updated to the new version of Scythe 7/26/2004 KQ// updated to Scythe 1.0.X 7/7/2007 ADM//#ifndef MCMCPOISSON_CC#define MCMCPOISSON_CC#include "MCMCrng.h"#include "MCMCfcds.h"#include "matrix.h"#include "distributions.h"#include "stat.h"#include "la.h"#include "ide.h"#include "smath.h"#include "rng.h"#include "mersenne.h"#include "lecuyer.h"#include <R.h> // needed to use Rprintf()#include <R_ext/Utils.h> // needed to allow user interruptsusing namespace std;using namespace scythe;static double poisson_logpost(const Matrix<>& Y, const Matrix<>& X, const Matrix<>& beta, const Matrix<>& beta_prior_mean, const Matrix<>& beta_prior_prec){ // likelihood const Matrix<> eta = X * beta; const Matrix<> mu = exp(eta); double loglike = 0.0; for (unsigned int i=0; i<Y.rows(); ++i) loglike += -mu[i] + Y[i] * eta[i]; // prior double logprior = 0.0; if (beta_prior_prec(0,0) != 0){ logprior = lndmvn(beta, beta_prior_mean, invpd(beta_prior_prec)); } return (loglike + logprior);}/* MCMCpoisson implementation. Takes Matrix<> reference and fills with the * posterior. */template <typename RNGTYPE> void MCMCpoisson_impl (rng<RNGTYPE>& stream, const Matrix<>& Y, const Matrix<>& X, const Matrix<>& tune, Matrix<>& beta, const Matrix<>& b0, const Matrix<>& B0, const Matrix<>& V, unsigned int burnin, unsigned int mcmc, unsigned int thin, unsigned int verbose, Matrix<>& result) { // define constants const unsigned int tot_iter = burnin + mcmc; // total number iterations const unsigned int nstore = mcmc / thin; // number of draws to store const unsigned int k = X.cols(); // storage matrix or matrices Matrix<> storemat(nstore, k); // proposal parameters const Matrix<> propV = tune * invpd(B0 + invpd(V)) * tune; const Matrix<> propC = cholesky(propV) ; double logpost_cur = poisson_logpost(Y, X, beta, b0, B0); // MCMC loop int count = 0; int accepts = 0; for (unsigned int iter = 0; iter < tot_iter; ++iter){ // sample beta const Matrix<> beta_can = gaxpy(propC, stream.rnorm(k,1,0,1), beta); const double logpost_can = poisson_logpost(Y,X,beta_can, b0, B0); const double ratio = ::exp(logpost_can - logpost_cur); if (stream.runif() < ratio){ beta = beta_can; logpost_cur = logpost_can; ++accepts; } // store values in matrices if (iter >= burnin && (iter % thin==0)){ storemat(count,_) = beta; ++count; } // print output to stdout if(verbose > 0 && iter % verbose == 0){ Rprintf("\n\nMCMCpoisson iteration %i of %i \n", (iter+1), tot_iter); Rprintf("beta = \n"); for (unsigned int j=0; j<k; ++j) Rprintf("%10.5f\n", beta[j]); Rprintf("Metropolis acceptance rate for beta = %3.5f\n\n", static_cast<double>(accepts) / static_cast<double>(iter+1)); } R_CheckUserInterrupt(); // allow user interrupts }// end MCMC loop result = storemat; Rprintf("\n\n@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@\n"); Rprintf("The Metropolis acceptance rate for beta was %3.5f", static_cast<double>(accepts) / static_cast<double>(tot_iter)); Rprintf("\n@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@\n");}extern "C"{void MCMCpoisson(double *sampledata, const int *samplerow, const int *samplecol, const double *Ydata, const int *Yrow, const int *Ycol, const double *Xdata, const int *Xrow, const int *Xcol, const int *burnin, const int *mcmc, const int *thin, const double *tunedata, const int *tunerow, const int *tunecol, const int *uselecuyer, const int *seedarray, const int *lecuyerstream, const int *verbose, const double *betastartdata, const int *betastartrow, const int *betastartcol, const double *b0data, const int *b0row, const int *b0col, const double *B0data, const int *B0row, const int *B0col, const double *Vdata, const int *Vrow, const int *Vcol) { // pull together Matrix objects const Matrix <> Y(*Yrow, *Ycol, Ydata); const Matrix <> X(*Xrow, *Xcol, Xdata); const Matrix <> tune(*tunerow, *tunecol, tunedata); Matrix <> beta(*betastartrow, *betastartcol, betastartdata); const Matrix <> b0(*b0row, *b0col, b0data); const Matrix <> B0(*B0row, *B0col, B0data); const Matrix <> V(*Vrow, *Vcol, Vdata); Matrix<> storagematrix; MCMCPACK_PASSRNG2MODEL(MCMCpoisson_impl, Y, X, tune, beta, b0, B0, V, *burnin, *mcmc, *thin, *verbose, storagematrix); const unsigned int size = *samplerow * *samplecol; for (unsigned int i=0; i<size; ++i) sampledata[i] = storagematrix(i); }}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -