📄 mcmcregress.cc
字号:
// MCMCregress.cc is a program that simualates draws from the posterior// density of a linear regression model with Gaussian errors.//// The initial version of this file was generated by the// auto.Scythe.call() function in the MCMCpack R package// written by://// Andrew D. Martin// Dept. of Political Science// Washington University in St. Louis// admartin@wustl.edu//// Kevin M. Quinn// Dept. of Government// Harvard University// kevin_quinn@harvard.edu// // This software is distributed under the terms of the GNU GENERAL// PUBLIC LICENSE Version 2, June 1991. See the package LICENSE// file for more information.//// Copyright (C) 2004 Andrew D. Martin and Kevin M. Quinn// // This file was initially generated on Fri Jul 23 15:07:21 2004//// ADM and KQ 10/10/2002 [ported to Scythe0.3]// ADM 6/2/04 [re-written using template]// KQ 6/18/04 [modified to meet new developer specification]// ADM 7/22/04 [modified to work with new Scythe and rngs]// DBP 7/1/07 [ported to scythe 1.0.x]//#ifndef MCMCREGRESS_CC#define MCMCREGRESS_CC#include "MCMCrng.h"#include "MCMCfcds.h"#include "matrix.h"#include "distributions.h"#include "stat.h"#include "la.h"#include "ide.h"#include "smath.h"#include "rng.h"#include <R.h> // needed to use Rprintf()#include <R_ext/Utils.h> // needed to allow user interruptsusing namespace std;using namespace scythe;static double digamma(double theta, double a, double b) { double logf = a * log(b) - lngammafn(a) + -(a+1) * log(theta) + -b/theta; return exp(logf); //pow(b, a) / gammafn(a) * pow(theta, -(a+1)) * exp(-b/theta);}/* MCMCregress implementation. Takes Matrix<> reference which it * fills with the posterior. The logmarklike double reference is * filled with the log marginal likelihood if asked for. */template <typename RNGTYPE>void MCMCregress_impl (rng<RNGTYPE>& stream, const Matrix<>& Y, const Matrix<>& X, Matrix<>& beta, const Matrix<>& b0, const Matrix<>& B0, double c0, double d0, unsigned int burnin, unsigned int mcmc, unsigned int thin, unsigned int verbose, bool chib, Matrix<>& result, double& logmarglike){ // define constants and form cross-product matrices const unsigned int tot_iter = burnin + mcmc; //total iterations const unsigned int nstore = mcmc / thin; // number of draws to store const unsigned int k = X.cols (); const Matrix<> XpX = crossprod(X); const Matrix<> XpY = t(X) * Y; // storage matrices Matrix<> betamatrix (k, nstore); Matrix<> sigmamatrix (1, nstore); // Gibbs sampler unsigned int count = 0; for (unsigned int iter = 0; iter < tot_iter; ++iter) { double sigma2 = NormIGregress_sigma2_draw (X, Y, beta, c0, d0, stream); beta = NormNormregress_beta_draw (XpX, XpY, b0, B0, sigma2, stream); // store draws in storage matrix (or matrices) if (iter >= burnin && (iter % thin == 0)) { sigmamatrix (0, count) = sigma2; betamatrix(_, count) = beta; ++count; } // print output to stdout if(verbose > 0 && iter % verbose == 0) { Rprintf("\n\nMCMCregress iteration %i of %i \n", (iter+1), tot_iter); Rprintf("beta = \n"); for (unsigned int j=0; j<k; ++j) Rprintf("%10.5f\n", beta(j)); Rprintf("sigma2 = %10.5f\n", sigma2); } R_CheckUserInterrupt(); // allow user interrupts } // end MCMC loop if (chib == 1) { // marginal likelihood calculation stuff starts here const double sigma2star = meanc(t(sigmamatrix))(0); double sigma2fcdsum = 0.0; // second set of Gibbs scans for (unsigned int iter = 0; iter < tot_iter; ++iter) { double sigma2 = NormIGregress_sigma2_draw (X, Y, beta, c0, d0, stream); beta = NormNormregress_beta_draw (XpX, XpY, b0, B0, sigma2, stream); const Matrix<> e = gaxpy(X, (-1*beta), Y); const Matrix<> SSE = crossprod (e); const double c_post = (c0 + X.rows ()) * 0.5; const double d_post = (d0 + SSE[0]) * 0.5; sigma2fcdsum += digamma(sigma2star, c_post, d_post); // print output to stdout if(verbose > 0 && iter % verbose == 0) { Rprintf("\n\nMCMCregress (reduced) iteration %i of %i \n", (iter+1), tot_iter); } R_CheckUserInterrupt(); // allow user interrupts } // end MCMC loop double sigma2fcdmean = sigma2fcdsum / static_cast<double>(tot_iter); const Matrix<> betastar = t(meanc(t(betamatrix))); const double sig2_inv = 1.0 / sigma2star; const Matrix<> sig_beta = invpd (B0 + XpX * sig2_inv); const Matrix<> betahat = sig_beta * gaxpy(B0, b0, XpY*sig2_inv); const double logbetafcd = lndmvn(betastar, betahat, sig_beta); // calculate loglikelihood at (betastar, sigma2star) double sigmastar = sqrt(sigma2star); Matrix<> eta = X * betastar; double loglike = 0.0; for (unsigned int i = 0; i < X.rows(); ++i) { loglike += lndnorm(Y(i), eta(i), sigmastar); } // calculate log prior ordinate double logprior = log(digamma(sigma2star, c0/2.0, d0/2.0)) + lndmvn(betastar, b0, invpd(B0)); // put pieces together and print the marginal likelihood logmarglike = loglike + logprior - logbetafcd - log(sigma2fcdmean); } result = cbind(t(betamatrix), t(sigmamatrix)); } // end MCMCregress extern "C" { void MCMCregress(double *sampledata, const int *samplerow, const int *samplecol, const double *Ydata, const int *Yrow, const int *Ycol, const double *Xdata, const int *Xrow, const int *Xcol, const int *burnin, const int *mcmc, const int *thin, const int *uselecuyer, const int *seedarray, const int *lecuyerstream, const int *verbose, const double *betastartdata, const int *betastartrow, const int *betastartcol, const double *b0data, const int *b0row, const int *b0col, const double *B0data, const int *B0row, const int *B0col, const double *c0, const double *d0, double* logmarglikeholder, const int* chib) { // pull together Matrix objects Matrix<> Y(*Yrow, *Ycol, Ydata); Matrix<> X(*Xrow, *Xcol, Xdata); Matrix<> betastart(*betastartrow, *betastartcol, betastartdata); Matrix<> b0(*b0row, *b0col, b0data); Matrix<> B0(*B0row, *B0col, B0data); double logmarglike; Matrix<> storagematrix; MCMCPACK_PASSRNG2MODEL(MCMCregress_impl, Y, X, betastart, b0, B0, *c0, *d0, *burnin, *mcmc, *thin, *verbose, *chib, storagematrix, logmarglike); logmarglikeholder[0] = logmarglike; const unsigned int size = *samplerow * *samplecol; for (unsigned int i = 0; i < size; ++i) sampledata[i] = storagematrix(i); }}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -