⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mcmctobit.rd

📁 使用R语言的马尔科夫链蒙特卡洛模拟(MCMC)源代码程序。
💻 RD
字号:
\name{MCMCtobit}\alias{MCMCtobit}\title{Markov Chain Monte Carlo for Gaussian Linear Regression with a Censored Dependent Variable}\description{  This function generates a sample from the posterior distribution   of a linear regression model with Gaussian errors using  Gibbs sampling (with a multivariate Gaussian prior on the  beta vector, and an inverse Gamma prior on the conditional  error variance).  The dependent variable may be censored  from below, from above, or both. The user supplies data   and priors, and a sample from the posterior distribution is   returned as an mcmc object, which can be subsequently   analyzed with functions provided in the coda package.  }\usage{MCMCtobit(formula, data = parent.frame(), below = 0, above = Inf,   burnin = 1000, mcmc = 10000, thin = 1, verbose = 0, seed = NA,   beta.start = NA, b0 = 0, B0 = 0, c0 = 0.001, d0 = 0.001, ...)}\arguments{    \item{formula}{A model formula.}      \item{data}{A dataframe.}      \item{below}{The point at which the dependent variable is       censored from below. The default is zero. To censor from       above only, specify that below = -Inf.}        \item{above}{The point at which the dependent variable is       censored from above. To censor from below only, use the      default value of Inf.}    \item{burnin}{The number of burn-in iterations for the sampler.}    \item{mcmc}{The number of MCMC iterations after burnin.}    \item{thin}{The thinning interval used in the simulation.  The number of      MCMC iterations must be divisible by this value.}    \item{verbose}{A switch which determines whether or not the progress of    the sampler is printed to the screen.  If \code{verbose} is greater    than 0 the iteration number, the    \eqn{\beta}{beta} vector, and the error variance is printed to     the screen every \code{verbose}th iteration.}    \item{seed}{The seed for the random number generator.  If NA, the Mersenne    Twister generator is used with default seed 12345; if an integer is     passed it is used to seed the Mersenne twister.  The user can also    pass a list of length two to use the L'Ecuyer random number generator,    which is suitable for parallel computation.  The first element of the    list is the L'Ecuyer seed, which is a vector of length six or NA (if NA     a default seed of \code{rep(12345,6)} is used).  The second element of     list is a positive substream number. See the MCMCpack specification     for more details.}    \item{beta.start}{The starting values for the \eqn{\beta}{beta} vector.    This can either be a scalar or a column vector with dimension equal to the     number of betas. The default value of of NA will use the OLS estimate of     \eqn{\beta}{beta} as the starting value.  If this is a scalar, that value     will serve as the starting value mean for all of the betas.}    \item{b0}{The prior mean of \eqn{\beta}{beta}.  This can either be a     scalar or a column vector with dimension equal to the number of betas. If     this takes a scalar  value, then that value will serve as the prior    mean for all of the betas.}         \item{B0}{The prior precision of \eqn{\beta}{beta}.  This can either be a     scalar or a square matrix with dimensions equal to the number of    betas.    If this takes a scalar value, then that value times an    identity matrix serves as the prior precision of beta. Default value    of 0 is equivalent to an improper uniform prior for beta.}        \item{c0}{\eqn{c_0/2}{c0/2} is the shape parameter for the inverse    Gamma prior on \eqn{\sigma^2}{sigma^2} (the variance of the    disturbances). The amount of information in the inverse Gamma prior    is something like that from \eqn{c_0}{c0} pseudo-observations.}         \item{d0}{\eqn{d_0/2}{d0/2} is the scale parameter for the    inverse Gamma prior on \eqn{\sigma^2}{sigma^2} (the variance of the    disturbances). In constructing the inverse Gamma prior,    \eqn{d_0}{d0} acts like the sum of squared errors from the    \eqn{c_0}{c0} pseudo-observations.}        \item{...}{further arguments to be passed}           }\details{  \code{MCMCtobit} simulates from the posterior distribution using standard  Gibbs sampling (a multivariate Normal draw for the betas, and an  inverse Gamma draw for the conditional error variance). \code{MCMCtobit}  differs from \code{MCMCregress} in that the dependent variable may be  censored from below, from above, or both. The simulation  proper is done in compiled C++ code to maximize efficiency.  Please consult  the coda documentation for a comprehensive list of functions that can be  used to analyze the posterior sample.    The model takes the following form:  \deqn{y_i = x_i ' \beta + \varepsilon_{i},}{y_i = x_i'beta + epsilon_i,}  where the errors are assumed to be Gaussian:  \deqn{\varepsilon_{i} \sim \mathcal{N}(0, \sigma^2).}{epsilon_i ~ N(0,    sigma^2).}  Let \eqn{c_1} and \eqn{c_2} be the two censoring points, and let  \eqn{y_i^\ast}{y_i^star} be the partially observed dependent variable. Then,  \deqn{y_i = y_i^{\ast} \texttt{ if } c_1 < y_i^{\ast} < c_2,}{y_i = y_i^star if c_1 < y_i^star < c_2,}  \deqn{y_i = c_1 \texttt{ if } c_1 \geq y_i^{\ast},}{y_i = c_1 if c_1 >= y_i^star,}  \deqn{y_i = c_2 \texttt{ if } c_2 \leq y_i^{\ast}.}{y_i = c_2 if c_1 <= y_i^star.}  We assume standard, semi-conjugate priors:  \deqn{\beta \sim \mathcal{N}(b_0,B_0^{-1}),}{beta ~ N(b0,B0^(-1)),}  and:  \deqn{\sigma^{-2} \sim \mathcal{G}amma(c_0/2, d_0/2),}{sigma^(-2) ~    Gamma(c0/2, d0/2),}  where \eqn{\beta}{beta} and \eqn{\sigma^{-2}}{sigma^(-2)} are assumed   \emph{a priori} independent.  Note that only starting values for  \eqn{\beta}{beta} are allowed because simulation is done using  Gibbs sampling with the conditional error variance  as the first block in the sampler.  }\value{   An mcmc object that contains the posterior sample.  This    object can be summarized by functions provided by the coda package.}\references{   Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin.  2007.     \emph{Scythe Statistical Library 1.0.} \url{http://scythe.wustl.edu}.      Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2002.   \emph{Output Analysis and Diagnostics for MCMC (CODA)}.   \url{http://www-fis.iarc.fr/coda/}.      James Tobin. 1958. ``Estimation of relationships for limited dependent    variables." \emph{Econometrica.} 26:24-36.}\author{Ben Goodrich, \email{goodrich.ben@gmail.com},  \url{http://www.people.fas.harvard.edu/~goodrich/}}\seealso{  \code{\link[coda]{plot.mcmc}},  \code{\link[coda]{summary.mcmc}},   \code{\link[survival]{survreg}},  \code{\link[MCMCpack]{MCMCregress}}}\examples{\dontrun{library(survival)example(tobin)summary(tfit)tfit.mcmc <- MCMCtobit(durable ~ age + quant, data=tobin, mcmc=30000,                        verbose=1000)plot(tfit.mcmc)raftery.diag(tfit.mcmc)summary(tfit.mcmc)}}\keyword{models}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -