📄 mcbinomialbeta.rd
字号:
\name{MCbinomialbeta}\alias{MCbinomialbeta}\title{Monte Carlo Simulation from a Binomial Likelihood with a Beta Prior}\description{ This function generates a sample from the posterior distribution of a binomial likelihood with a Beta prior. } \usage{MCbinomialbeta(y, n, alpha=1, beta=1, mc=1000, ...)}\arguments{ \item{y}{The number of successes in the independent Bernoulli trials.} \item{n}{The number of independent Bernoulli trials.} \item{alpha}{Beta prior distribution alpha parameter.} \item{beta}{Beta prior distribution beta parameter.} \item{mc}{The number of Monte Carlo draws to make.} \item{...}{further arguments to be passed} }\value{ An mcmc object that contains the posterior sample. This object can be summarized by functions provided by the coda package.}\details{ \code{MCbinomialbeta} directly simulates from the posterior distribution. This model is designed primarily for instructional use. \eqn{\pi}{pi} is the probability of success for each independent Bernoulli trial. We assume a conjugate Beta prior: \deqn{\pi \sim \mathcal{B}eta(\alpha, \beta)}{pi ~ Beta(alpha, beta)} \eqn{y} is the number of successes in \eqn{n} trials. By default, a uniform prior is used. } \examples{\dontrun{posterior <- MCbinomialbeta(3,12,mc=5000)summary(posterior)plot(posterior)grid <- seq(0,1,0.01)plot(grid, dbeta(grid, 1, 1), type="l", col="red", lwd=3, ylim=c(0,3.6), xlab="pi", ylab="density")lines(density(posterior), col="blue", lwd=3)legend(.75, 3.6, c("prior", "posterior"), lwd=3, col=c("red", "blue"))}}\keyword{models}\seealso{\code{\link[coda]{plot.mcmc}}, \code{\link[coda]{summary.mcmc}}}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -