⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mcbinomialbeta.rd

📁 使用R语言的马尔科夫链蒙特卡洛模拟(MCMC)源代码程序。
💻 RD
字号:
\name{MCbinomialbeta}\alias{MCbinomialbeta}\title{Monte Carlo Simulation from a Binomial Likelihood with a Beta Prior}\description{  This function generates a sample from the posterior distribution  of a binomial likelihood with a Beta prior.  }  \usage{MCbinomialbeta(y, n, alpha=1, beta=1, mc=1000, ...)}\arguments{    \item{y}{The number of successes in the independent Bernoulli trials.}    \item{n}{The number of independent Bernoulli trials.}    \item{alpha}{Beta prior distribution alpha parameter.}    \item{beta}{Beta prior distribution beta parameter.}    \item{mc}{The number of Monte Carlo draws to make.}            \item{...}{further arguments to be passed}       }\value{   An mcmc object that contains the posterior sample.  This    object can be summarized by functions provided by the coda package.}\details{  \code{MCbinomialbeta} directly simulates from the posterior distribution.   This model is designed primarily for instructional use.  \eqn{\pi}{pi} is  the probability of success for each independent Bernoulli trial.  We assume  a conjugate Beta prior:  \deqn{\pi \sim \mathcal{B}eta(\alpha, \beta)}{pi ~ Beta(alpha, beta)}  \eqn{y} is the number of successes in \eqn{n} trials.  By default, a uniform prior is used.  }  \examples{\dontrun{posterior <- MCbinomialbeta(3,12,mc=5000)summary(posterior)plot(posterior)grid <- seq(0,1,0.01)plot(grid, dbeta(grid, 1, 1), type="l", col="red", lwd=3, ylim=c(0,3.6),  xlab="pi", ylab="density")lines(density(posterior), col="blue", lwd=3)legend(.75, 3.6, c("prior", "posterior"), lwd=3, col=c("red", "blue"))}}\keyword{models}\seealso{\code{\link[coda]{plot.mcmc}},  \code{\link[coda]{summary.mcmc}}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -