⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mcmcirt1d.rd

📁 使用R语言的马尔科夫链蒙特卡洛模拟(MCMC)源代码程序。
💻 RD
字号:
\name{MCMCirt1d}\alias{MCMCirt1d}\title{Markov Chain Monte Carlo for One Dimensional Item Response Theory   Model}\description{  This function generates a sample from the posterior distribution of a one  dimentional item response theory (IRT) model, with Normal  priors on the subject abilities (ideal points), and  multivariate Normal priors on the item parameters.  The user  supplies data and priors, and a sample from the posterior  distribution is returned as an mcmc object, which can be  subsequently analyzed with functions provided in the coda  package.  If you are interested in fitting  K-dimensional item response theory  models, or would rather identify the model by placing constraints  on the item parameters, please see \code{\link[MCMCpack]{MCMCirtKd}}.  }\usage{MCMCirt1d(datamatrix, theta.constraints=list(), burnin = 1000,   mcmc = 20000, thin=1, verbose = 0, seed = NA, theta.start = NA,    alpha.start = NA, beta.start = NA, t0 = 0, T0 = 1, ab0=0, AB0=.25,   store.item = FALSE, store.ability = TRUE,   drop.constant.items=TRUE, ... )  }\arguments{    \item{datamatrix}{The matrix of data.  Must be 0, 1, or missing values.       The rows of \code{datamatrix} correspond to subjects and the     columns correspond to items.}    \item{theta.constraints}{A list specifying possible simple equality    or inequality constraints on the ability parameters. A typical    entry in the list has one of three forms: \code{varname=c} which    will constrain the ability parameter for the subject named    \code{varname} to be equal to c, \code{varname="+"} which will    constrain the ability parameter for the subject named \code{varname}    to be positive, and  \code{varname="-"} which will constrain the    ability parameter for the subject named \code{varname} to be    negative. If x is a matrix without row names defaults names of    ``V1",``V2", ... , etc will be used. See Rivers (2003) for a    thorough discussion of identification of IRT models.}    \item{burnin}{The number of burn-in iterations for the sampler.}    \item{mcmc}{The number of Gibbs iterations for the sampler.}    \item{thin}{The thinning interval used in the simulation.  The number of    Gibbs iterations must be divisible by this value.}    \item{verbose}{A switch which determines whether or not the progress of      the sampler is printed to the screen.   If \code{verbose} is greater      than 0 then every \code{verbose}th iteration will be printed to the      screen.}        \item{seed}{The seed for the random number generator.  If NA, the Mersenne    Twister generator is used with default seed 12345; if an integer is     passed it is used to seed the Mersenne twister.  The user can also    pass a list of length two to use the L'Ecuyer random number generator,    which is suitable for parallel computation.  The first element of the    list is the L'Ecuyer seed, which is a vector of length six or NA (if NA     a default seed of \code{rep(12345,6)} is used).  The second element of     list is a positive substream number. See the MCMCpack     specification for more details.}    \item{theta.start}{The starting values for the subject    abilities (ideal points). This can either be a scalar or a    column vector with dimension equal to the number of voters.      If this takes a scalar value, then that value will serve as    the starting value for all of the thetas.  The default value    of NA will choose the starting values based on an    eigenvalue-eigenvector decomposition of the aggreement score matrix    formed from the \code{datamatrix}.}    \item{alpha.start}{The starting values for the    \eqn{\alpha}{alpha} difficulty parameters. This can either be    a scalar or a column vector with dimension equal to the    number of items.   If this takes a scalar value, then that    value will serve as the starting value for all of the alphas.     The default value of NA will set the starting values based on     a series of probit regressions that condition on the starting     values of theta.}    \item{beta.start}{The starting values for the    \eqn{\beta}{beta} discrimination parameters. This can either    be a scalar or a column vector with dimension equal to the    number of items.   If this takes a scalar value, then that    value will serve as the starting value for all of the betas.     The default value of NA will set the starting values based on a    series of probit regressions that condition on the starting values    of theta.}        \item{t0}{A scalar parameter giving the prior mean of the subject      abilities (ideal points).}         \item{T0}{A scalar parameter giving the prior precision (inverse      variance) of the subject abilities (ideal points).}        \item{ab0}{The prior mean of \code{(alpha, beta)}. Can be either a      scalar or a 2-vector. If a scalar both means will be set to the      passed value. The prior mean is assumed to be the same across all      items.}     \item{AB0}{The prior precision of \code{(alpha, beta)}.This can      either be ascalar or a 2 by 2 matrix. If this takes a scalar      value, then that value times an identity matrix serves as the      prior precision. The prior precision is assumed to be the same      across all items.}        \item{store.item}{A switch that determines whether or not to    store the item parameters for posterior analysis.     \emph{NOTE: In situations with many items storing the item      parameters takes an enormous amount of memory, so      \code{store.item} should only be \code{FALSE} if the chain is thinned      heavily, or for applications with a small number of items}.    By default, the item parameters are not stored.}  \item{store.ability}{A switch that determines whether or not to    store the ability parameters for posterior analysis.     \emph{NOTE: In situations with many individuals storing the ability      parameters takes an enormous amount of memory, so      \code{store.ability} should only be \code{TRUE} if the chain is thinned      heavily, or for applications with a small number of individuals}.    By default, the item parameters are stored.}  \item{drop.constant.items}{A switch that determines whether or not        items that have no variation	should be deleted before fitting the model. Default = TRUE.}        \item{...}{further arguments to be passed}       }\value{  An mcmc object that contains the sample from the posterior  distribution. This object can be summarized by functions provided by  the coda package. }\details{  \code{MCMCirt1d} simulates from the posterior distribution using  standard Gibbs sampling using data augmentation (a Normal draw  for the subject abilities, a multivariate Normal  draw for the item parameters, and a truncated Normal draw for  the latent utilities). The simulation proper is done in  compiled C++ code to maximize efficiency.  Please consult the  coda documentation for a comprehensive list of functions that  can be used to analyze the posterior sample.    The model takes the following form.  We assume that each  subject has an subject ability (ideal point) denoted  \eqn{\theta_j}{theta_j} and that each item has a difficulty  parameter \eqn{\alpha_i}{alpha_i} and discrimination parameter  \eqn{\beta_i}{beta_i}.  The observed choice by subject  \eqn{j}{j} on item \eqn{i}{i} is the observed data matrix which  is \eqn{(I \times J)}{(I * J)}.  We assume that the choice is  dictated by an unobserved utility: \deqn{z_{i,j} = -\alpha_i +  \beta_i \theta_j + \varepsilon_{i,j}}{z_ij = -alpha_i +  beta_i*theta_j + epsilon_ij} Where the errors are assumed to be  distributed standard Normal.  The parameters of interest are  the subject abilities (ideal points) and the item parameters.  We assume the following priors.  For the subject abilities (ideal points):  \deqn{\theta_j \sim \mathcal{N}(t_{0},T_{0}^{-1})}{theta_j ~ N(t0, T0^{-1})}  For the item parameters, the prior is:  \deqn{\left[\alpha_i, \beta_i \right]' \sim \mathcal{N}_2   (ab_{0},AB_{0}^{-1})}{[alpha_i beta_i]' ~ N_2 (ab0, AB0^{-1})}     The model is identified by the proper priors on the item parameters  and constraints placed on the ability parameters.      As is the case with all measurement models, make sure that you have plenty  of free memory, especially when storing the item parameters.  }  \references{   James H. Albert. 1992. ``Bayesian Estimation of Normal Ogive Item Response    Curves Using Gibbs Sampling." \emph{Journal of Educational Statistics}.     17: 251-269.      Joshua Clinton, Simon Jackman, and Douglas Rivers. 2004. ``The Statistical    Analysis of Roll Call Data."  \emph{American Political Science Review}.   98: 355-370.      Valen E. Johnson and James H. Albert. 1999. ``Ordinal Data Modeling."    Springer: New York.   Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin.  2007.     \emph{Scythe Statistical Library 1.0.} \url{http://scythe.wustl.edu}.      Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2002.   \emph{Output Analysis and Diagnostics for MCMC (CODA)}.   \url{http://www-fis.iarc.fr/coda/}.      Douglas Rivers.  2004.  ``Identification of Multidimensional Item-Response   Models."  Stanford University, typescript.}\examples{   \dontrun{   ## US Supreme Court Example with inequality constraints   data(SupremeCourt)   posterior1 <- MCMCirt1d(t(SupremeCourt),                   theta.constraints=list(Scalia="+", Ginsburg="-"),                   B0.alpha=.2, B0.beta=.2,                   burnin=500, mcmc=100000, thin=20, verbose=500,                   store.item=TRUE)   geweke.diag(posterior1)   plot(posterior1)   summary(posterior1)   ## US Senate Example with equality constraints   data(Senate)   Sen.rollcalls <- Senate[,6:677]   posterior2 <- MCMCirt1d(Sen.rollcalls,                    theta.constraints=list(KENNEDY=-2, HELMS=2),                    burnin=2000, mcmc=100000, thin=20, verbose=500)   geweke.diag(posterior2)   plot(posterior2)   summary(posterior2)   }}\keyword{models}\seealso{\code{\link[coda]{plot.mcmc}},\code{\link[coda]{summary.mcmc}},\code{\link[MCMCpack]{MCMCirtKd}}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -