⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mcmcpoisson.rd

📁 使用R语言的马尔科夫链蒙特卡洛模拟(MCMC)源代码程序。
💻 RD
字号:
\name{MCMCpoisson}\alias{MCMCpoisson}\title{Markov Chain Monte Carlo for Poisson Regression}\description{  This function generates a sample from the posterior distribution  of a Poisson regression model using a random walk Metropolis  algorithm. The user supplies data and priors,  and a sample from the posterior distribution is returned as an mcmc  object, which can be subsequently analyzed with functions   provided in the coda package.  }  \usage{MCMCpoisson(formula, data = parent.frame(), burnin = 1000, mcmc = 10000,   thin = 1, tune = 1.1, verbose = 0, seed = NA,  beta.start = NA,   b0 = 0, B0 = 0, marginal.likelihood = c("none", "Laplace"), ...) }\arguments{    \item{formula}{Model formula.}    \item{data}{Data frame.}    \item{burnin}{The number of burn-in iterations for the sampler.}    \item{mcmc}{The number of Metropolis iterations for the sampler.}    \item{thin}{The thinning interval used in the simulation.  The number of    mcmc iterations must be divisible by this value.}    \item{tune}{Metropolis tuning parameter. Can be either a positive      scalar or a \eqn{k}{k}-vector, where \eqn{k}{k} is the length of      \eqn{\beta}{beta}.Make sure that the      acceptance rate is satisfactory (typically between 0.20 and 0.5)      before using the posterior sample for inference.}        \item{verbose}{A switch which determines whether or not the progress of    the sampler is printed to the screen.  If \code{verbose} is greater    than 0 the iteration number,    the current beta vector, and the Metropolis acceptance rate  are    printed to the screen every \code{verbose}th iteration.}     \item{seed}{The seed for the random number generator.  If NA, the Mersenne    Twister generator is used with default seed 12345; if an integer is     passed it is used to seed the Mersenne twister.  The user can also    pass a list of length two to use the L'Ecuyer random number generator,    which is suitable for parallel computation.  The first element of the    list is the L'Ecuyer seed, which is a vector of length six or NA (if NA     a default seed of \code{rep(12345,6)} is used).  The second element of     list is a positive substream number. See the MCMCpack     specification for more details.}        \item{beta.start}{The starting value for the \eqn{\beta}{beta} vector.    This can either     be a scalar or a column vector with dimension equal to the number of     betas. If this takes a scalar value, then that value will serve as the     starting value for all of the betas.  The default value of NA will    use the maximum likelihood estimate of \eqn{\beta}{beta} as the starting     value.}    \item{b0}{The prior mean of \eqn{\beta}{beta}.  This can either be a     scalar or a column          vector with dimension equal to the number of betas. If this takes a scalar    value, then that value will serve as the prior mean for all of the    betas.}  \item{B0}{The prior precision of \eqn{\beta}{beta}.  This can either be a    scalar    or a square matrix with dimensions equal to the number of betas.  If this    takes a scalar value, then that value times an identity matrix serves    as the prior precision of \eqn{\beta}{beta}. Default value of 0 is    equivalent to an improper uniform prior for beta.}  \item{marginal.likelihood}{How should the marginal likelihood be    calculated? Options are: \code{none} in which case the marginal    likelihood will not be calculated or \code{Laplace} in which case the    Laplace approximation (see Kass and Raftery, 1995) is used.}      \item{\ldots}{further arguments to be passed}       }\value{   An mcmc object that contains the posterior sample.  This    object can be summarized by functions provided by the coda package.}\details{\code{MCMCpoisson} simulates from the posterior distribution of  a Poisson regression model using a random walk Metropolis  algorithm. The simulation proper is done in compiled C++ code to  maximize efficiency.  Please consult the coda documentation for a  comprehensive list of functions that can be used to analyze the  posterior sample.     The model takes the following form:  \deqn{y_i \sim \mathcal{P}oisson(\mu_i)}{y_i ~ Poisson(mu_i)}  Where the inverse link function:  \deqn{\mu_i = \exp(x_i'\beta)}{mu_i = exp(x_i'beta)}  We assume a multivariate Normal prior on \eqn{\beta}{beta}:    \deqn{\beta \sim \mathcal{N}(b_0,B_0^{-1})}{beta ~ N(b0,B0^(-1))}  The Metropois proposal distribution is centered at the current value of  \eqn{\theta}{theta} and has variance-covariance \eqn{V = T    (B_0 + C^{-1})^{-1} T }{V = T (B0 + C^{-1})^{-1} T}, where  \eqn{T}{T} is a the diagonal positive definite matrix formed from the  \code{tune}, \eqn{B_0}{B0} is the prior precision, and \eqn{C}{C} is  the large sample variance-covariance matrix of the MLEs. This last  calculation is done via an initial call to \code{glm}. }  \references{         Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin.  2007.     \emph{Scythe Statistical Library 1.0.} \url{http://scythe.wustl.edu}.      Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2002.   \emph{Output Analysis and Diagnostics for MCMC (CODA)}.   \url{http://www-fis.iarc.fr/coda/}.}\examples{   \dontrun{   counts <- c(18,17,15,20,10,20,25,13,12)   outcome <- gl(3,1,9)   treatment <- gl(3,3)   posterior <- MCMCpoisson(counts ~ outcome + treatment)   plot(posterior)   summary(posterior)   }}\keyword{models}\seealso{\code{\link[coda]{plot.mcmc}},\code{\link[coda]{summary.mcmc}}, \code{\link[base]{glm}}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -