⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mcpoissongamma.rd

📁 使用R语言的马尔科夫链蒙特卡洛模拟(MCMC)源代码程序。
💻 RD
字号:
\name{MCpoissongamma}\alias{MCpoissongamma}\title{Monte Carlo Simulation from a Poisson Likelihood with a Gamma Prior}\description{  This function generates a sample from the posterior distribution  of a Poisson likelihood with a Gamma prior.  }  \usage{MCpoissongamma(y, alpha, beta, mc=1000, ...)}\arguments{    \item{y}{A vector of counts (must be non-negative).}    \item{alpha}{Gamma prior distribution shape parameter.}    \item{beta}{Gamma prior distribution scale parameter.}    \item{mc}{The number of Monte Carlo draws to make.}            \item{...}{further arguments to be passed}    }\value{   An mcmc object that contains the posterior sample.  This    object can be summarized by functions provided by the coda package.}\details{  \code{MCpoissongamma} directly simulates from the posterior distribution.   This model is designed primarily for instructional use.  \eqn{\lambda}{lambda}  is the parameter of interest of the Poisson distribution.  We assume  a conjugate Gamma prior:  \deqn{\lambda \sim \mathcal{G}amma(\alpha, \beta)}{lambda ~ Gamma(alpha, beta)}  \eqn{y} is a vector of counts.  }  \examples{\dontrun{data(quine)posterior <- MCpoissongamma(quine$Days, 15, 1, 5000)summary(posterior)plot(posterior)grid <- seq(14,18,0.01)plot(grid, dgamma(grid, 15, 1), type="l", col="red", lwd=3, ylim=c(0,1.3),  xlab="lambda", ylab="density")lines(density(posterior), col="blue", lwd=3)legend(17, 1.3, c("prior", "posterior"), lwd=3, col=c("red", "blue"))}}\keyword{models}\seealso{\code{\link[coda]{plot.mcmc}},  \code{\link[coda]{summary.mcmc}}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -