⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mcmcprobit.rd

📁 使用R语言的马尔科夫链蒙特卡洛模拟(MCMC)源代码程序。
💻 RD
字号:
\name{MCMCprobit}\alias{MCMCprobit}\title{Markov Chain Monte Carlo for Probit Regression}\description{  This function generates a sample from the posterior distribution of  a probit regression model using the data augmentation  approach of Albert and Chib (1993). The user supplies data and priors,  and a sample from the posterior distribution is returned as an mcmc  object, which can be subsequently analyzed with functions   provided in the coda package.  }  \usage{MCMCprobit(formula, data = parent.frame(), burnin = 1000, mcmc = 10000,   thin = 1, verbose = 0, seed = NA, beta.start = NA,   b0 = 0, B0 = 0, bayes.resid = FALSE,   marginal.likelihood=c("none", "Laplace"), ...) }\arguments{    \item{formula}{Model formula.}    \item{data}{Data frame.}    \item{burnin}{The number of burn-in iterations for the sampler.}    \item{mcmc}{The number of Gibbs iterations for the sampler.}    \item{thin}{The thinning interval used in the simulation.  The number of    Gibbs iterations must be divisible by this value.}    \item{verbose}{A switch which determines whether or not the progress of    the sampler is printed to the screen.  If \code{verbose} is greater    than 0 the iteration number and    the betas are printed to the screen every \code{verbose}th iteration.}      \item{seed}{The seed for the random number generator.  If NA, the Mersenne      Twister generator is used with default seed 12345; if an integer is       passed it is used to seed the Mersenne twister.  The user can also      pass a list of length two to use the L'Ecuyer random number generator,      which is suitable for parallel computation.  The first element of the      list is the L'Ecuyer seed, which is a vector of length six or NA (if NA       a default seed of \code{rep(12345,6)} is used).  The second element of       list is a positive substream number. See the MCMCpack       specification for more details.}      \item{beta.start}{The starting value for the \eqn{\beta}{beta} vector.        This can either     be a scalar or a column vector with dimension equal to the number of     betas.  If this takes a scalar value, then that value will serve as     the     starting value for all of the betas. The default value of NA will    use the maximum likelihood estimate of \eqn{\beta}{beta} as the starting     value.}    \item{b0}{The prior mean of \eqn{\beta}{beta}.  This can either be a     scalar or a column           vector with dimension equal to the number of betas. If this takes a scalar    value, then that value will serve as the prior mean for all of the    betas.}    \item{B0}{The prior precision of \eqn{\beta}{beta}.  This can either    be a scalar     or a square matrix with dimensions equal to the number of betas.  If this    takes a scalar value, then that value times an identity matrix serves    as the prior precision of \eqn{\beta}{beta}. Default value of 0 is     equivalent to    an improper uniform prior on \eqn{\beta}{beta}.}   \item{bayes.resid}{Should latent Bayesian residuals (Albert and Chib,    1995) be returned? Default is FALSE meaning no residuals should be    returned. Alternatively, the user can specify an array of integers    giving the observation numbers for which latent residuals should be    calculated and returned. TRUE will return draws of    latent residuals for all observations.}  \item{marginal.likelihood}{How should the marginal likelihood be    calculated? Options are: \code{none} in which case the marginal    likelihood will not be calculated or \code{Laplace} in which case the    Laplace approximation (see Kass and Raftery, 1995) is used.}    \item{...}{further arguments to be passed}       }\value{   An mcmc object that contains the posterior sample.  This    object can be summarized by functions provided by the coda package.}\details{\code{MCMCprobit} simulates from the posterior distribution of a probit  regression model using data augmentation. The simulation  proper is done in compiled C++ code to maximize efficiency.  Please consult  the coda documentation for a comprehensive list of functions that can be  used to analyze the posterior sample.  The model takes the following form:  \deqn{y_i \sim \mathcal{B}ernoulli(\pi_i)}{y_i ~ Bernoulli(pi_i)}  Where the inverse link function:  \deqn{\pi_i = \Phi(x_i'\beta)}{pi_i = Phi(x_i'beta)}  We assume a multivariate Normal prior on \eqn{\beta}{beta}:    \deqn{\beta \sim \mathcal{N}(b_0,B_0^{-1})}{beta ~ N(b0,B0^(-1))}  See Albert and Chib (1993) for estimation details.   }  \references{  Albert, J. H. and S. Chib. 1993. ``Bayesian Analysis of Binary and  Polychotomous Response Data.'' \emph{J. Amer. Statist. Assoc.} 88, 669-679  Albert, J. H. and S. Chib. 1995. ``Bayesian Residual Analysis for  Binary Response Regression Models.'' \emph{Biometrika.} 82, 747-759.         Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin.  2007.     \emph{Scythe Statistical Library 1.0.} \url{http://scythe.wustl.edu}.      Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2002.   \emph{Output Analysis and Diagnostics for MCMC (CODA)}.   \url{http://www-fis.iarc.fr/coda/}.}\examples{   \dontrun{   data(birthwt)   posterior <- MCMCprobit(low~age+as.factor(race)+smoke, data=birthwt)   plot(posterior)   summary(posterior)   }}\keyword{models}\seealso{\code{\link[coda]{plot.mcmc}},\code{\link[coda]{summary.mcmc}}, \code{\link[base]{glm}}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -