📄 mcnormalnormal.rd
字号:
\name{MCnormalnormal}\alias{MCnormalnormal}\title{Monte Carlo Simulation from a Normal Likelihood (with known variance) with a Normal Prior}\description{ This function generates a sample from the posterior distribution of a Normal likelihood (with known variance) with a Normal prior. } \usage{MCnormalnormal(y, sigma2, mu0, tau20, mc=1000, ...)}\arguments{ \item{y}{The data.} \item{sigma2}{The known variance of y.} \item{mu0}{The prior mean of mu.} \item{tau20}{The prior variance of mu.} \item{mc}{The number of Monte Carlo draws to make.} \item{...}{further arguments to be passed} }\value{ An mcmc object that contains the posterior sample. This object can be summarized by functions provided by the coda package.}\details{ \code{MCnormalnormal} directly simulates from the posterior distribution. This model is designed primarily for instructional use. \eqn{\mu}{mu} is the parameter of interest of the Normal distribution. We assume a conjugate normal prior: \deqn{\mu \sim \mathcal{N}(\mu_0, \tau^2_0)}{mu ~ N(mu0, tau20)} \eqn{y} is a vector of observed data. } \examples{\dontrun{y <- c(2.65, 1.80, 2.29, 2.11, 2.27, 2.61, 2.49, 0.96, 1.72, 2.40)posterior <- MCMCpack:::MCnormalnormal(y, 1, 0, 1, 5000)summary(posterior)plot(posterior)grid <- seq(-3,3,0.01)plot(grid, dnorm(grid, 0, 1), type="l", col="red", lwd=3, ylim=c(0,1.4), xlab="mu", ylab="density")lines(density(posterior), col="blue", lwd=3)legend(-3, 1.4, c("prior", "posterior"), lwd=3, col=c("red", "blue"))}}\keyword{models}\seealso{\code{\link[coda]{plot.mcmc}}, \code{\link[coda]{summary.mcmc}}}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -