⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mcmcdynamicei.rd

📁 使用R语言的马尔科夫链蒙特卡洛模拟(MCMC)源代码程序。
💻 RD
字号:
\name{MCMCdynamicEI}\alias{MCMCdynamicEI}\title{Markov Chain Monte Carlo for Quinn's Dynamic Ecological  Inference Model}\description{  MCMCdynamicEI is used to fit Quinn's dynamic ecological inference  model for partially observed 2 x 2 contingency tables.  }  \usage{MCMCdynamicEI(r0, r1, c0, c1, burnin=5000, mcmc=50000, thin=1,              verbose=0, seed=NA, W=0, a0=0.825,              b0=0.0105, a1=0.825, b1=0.0105, ...)   }\arguments{  \item{r0}{\eqn{(ntables \times 1)}{(ntables * 1)} vector of row  sums from row 0.}  \item{r1}{\eqn{(ntables \times 1)}{(ntables * 1)} vector of row  sums from row 1.}  \item{c0}{\eqn{(ntables \times 1)}{(ntables * 1)} vector of  column sums from column 0.}  \item{c1}{\eqn{(ntables \times 1)}{(ntables * 1)} vector of  column sums from column 1.}  \item{burnin}{The number of burn-in scans for the sampler.}  \item{mcmc}{The number of mcmc scans to be saved.}  \item{thin}{The thinning interval used in the simulation.  The number of    mcmc iterations must be divisible by this value.}  \item{verbose}{A switch which determines whether or not the progress of    the sampler is printed to the screen.  If \code{verbose} is greater    than 0 then every \code{verbose}th iteration will be printed to the    screen.}     \item{seed}{The seed for the random number generator.  If NA, the Mersenne    Twister generator is used with default seed 12345; if an integer is     passed it is used to seed the Mersenne twister.  The user can also    pass a list of length two to use the L'Ecuyer random number generator,    which is suitable for parallel computation.  The first element of the    list is the L'Ecuyer seed, which is a vector of length six or NA (if NA     a default seed of \code{rep(12345,6)} is used).  The second element of     list is a positive substream number. See the MCMCpack     specification for more details.}      \item{W}{Weight (\emph{not precision}) matrix structuring the temporal    dependence among elements of  \eqn{\theta_{0}}{theta0} and    \eqn{\theta_{1}}{theta1}. The default value of 0 will construct a    weight matrix that corresponds to random walk priors for    \eqn{\theta_{0}}{theta0} and \eqn{\theta_{1}}{theta1}. The default    assumes that the tables are equally spaced throughout time and that    the elements of \eqn{r0}, \eqn{r1}, \eqn{c0}, and \eqn{c1} are    temporally ordered.}  \item{a0}{\code{a0/2} is the shape parameter for the inverse-gamma    prior on the \eqn{\sigma^2_0}{sigma^2_0} parameter.}    \item{b0}{\code{b0/2} is the scale parameter for the inverse-gamma    prior on the \eqn{\sigma^2_0}{sigma^2_0} parameter.}               \item{a1}{\code{a1/2} is the shape parameter for the inverse-gamma    prior on the \eqn{\sigma^2_1}{sigma^2_1} parameter.}    \item{b1}{\code{b1/2} is the scale parameter for the inverse-gamma    prior on the \eqn{\sigma^2_1}{sigma^2_1} parameter.}  \item{...}{further arguments to be passed}     }\value{  An mcmc object that contains the sample from the posterior distribution.  This object can  be summarized by functions provided by the coda package.}\details{  Consider the following partially observed 2 by 2 contingency table for  unit \eqn{t} where \eqn{t=1,\ldots,ntables}{t=1,...,ntables}:\cr  \cr  \tabular{llll}{               \tab | \eqn{Y=0} \tab | \eqn{Y=1} \tab |   \cr    - - - - - \tab - - - - - \tab - - - - - \tab - - - - - \cr    \eqn{X=0} \tab | \eqn{Y_{0t}}{Y0[t]} \tab |  \tab | \eqn{r_{0t}}{r0[t]}\cr    - - - - - \tab - - - - - \tab - - - - - \tab - - - - - \cr    \eqn{X=1} \tab | \eqn{Y_{1t}}{Y1[t]} \tab |  \tab | \eqn{r_{1t}}{r1[t]}\cr    - - - - - \tab - - - - - \tab - - - - - \tab - - - - - \cr    \tab | \eqn{c_{0t}}{c0[t]} \tab | \eqn{c_{1t}}{c1[t]} \tab | \eqn{N_t}{N[t]}\cr      }  Where \eqn{r_{0t}}{r0-t}, \eqn{r_{1t}}{r1[t]},  \eqn{c_{0t}}{c0[t]}, \eqn{c_{1t}}{c1[t]}, and  \eqn{N_t}{N[t]}  are non-negative integers that are  observed. The interior cell entries are not observed. It is  assumed that \eqn{Y_{0t}|r_{0t} \sim \mathcal{B}inomial(r_{0t},    p_{0t})}{Y0[t]|r0[t] ~ Binomial(r0[t], p0[t])} and   \eqn{Y_{1t}|r_{1t} \sim \mathcal{B}inomial(r_{1t}, p_{1t})}{Y1[t]|r1[t] ~    Binomial(r1[t],p1[t])}. Let \eqn{\theta_{0t} =    log(p_{0t}/(1-p_{0t}))}{theta0[t] = log(p0[t]/(1-p0[t]))},  and  \eqn{\theta_{1t} = log(p_{1t}/(1-p_{1t}))}{theta1[t] =    log(p1[t]/(1-p1[t]))}.  The following prior distributions are  assumed:  \deqn{p(\theta_0|\sigma^2_0) \propto \sigma_0^{-ntables}    \exp \left(-\frac{1}{2\sigma^2_0}    \theta'_{0} P \theta_{0}\right)}{p(theta0|sigma^2_0) propto    sigma^(-ntables)_0 exp(-1/(2*sigma^2_0) theta0' * P * theta0)}  and  \deqn{p(\theta_1|\sigma^2_1) \propto \sigma_1^{-ntables}    \exp \left(-\frac{1}{2\sigma^2_1}    \theta'_{1} P \theta_{1}\right)}{p(theta1|sigma^2_1) propto    sigma^(-ntables)_1 exp(-1/(2*sigma^2_1) theta1' * P * theta1)}  where \eqn{P_{ts}}{P[t,s]} = \eqn{-W_{ts}}{-W[t,s]} for \eqn{t} not  equal to \eqn{s} and \eqn{P_{tt}}{P[t,t]} =  \eqn{\sum_{s \ne t}W_{ts}}{sum(W[t,])}.  The \eqn{\theta_{0t}}{theta0[t]} is assumed to be a priori independent of  \eqn{\theta_{1t}}{theta1[t]} for all t.  In addition, the  following hyperpriors are assumed:  \eqn{\sigma^2_0 \sim \mathcal{IG}(a_0/2, b_0/2)}{\sigma^2_0 ~    InvGamma(a0/2, b0/2)}, and  \eqn{\sigma^2_1 \sim \mathcal{IG}(a_1/2, b_1/2)}{\sigma^2_1 ~    InvGamma(a1/2, b1/2)}.  Inference centers on \eqn{p_0}{p0}, \eqn{p_1}{p1},  \eqn{\sigma^2_0}{sigma^2_0}, and \eqn{\sigma^2_1}{sigma^2_1}.   Univariate slice sampling (Neal, 2003) together with Gibbs sampling   is used to sample from the posterior distribution.   }  \references{Kevin Quinn. 2004. ``Ecological Inference in the Presence of Temporal Dependence." In \emph{Ecological Inference: New MethodologicalStrategies}. Gary King, Ori Rosen, and Martin A. Tanner (eds.). NewYork: Cambridge University Press.    Radford Neal. 2003. ``Slice Sampling" (with discussion). \emph{Annals of   Statistics}, 31: 705-767.    Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin.  2007.     \emph{Scythe Statistical Library 1.0.} \url{http://scythe.wustl.edu}.     Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2002.  \emph{Output Analysis and Diagnostics for MCMC (CODA)}.  \url{http://www-fis.iarc.fr/coda/}.Jonathan C. Wakefield. 2004. ``Ecological Inference for 2 x 2 Tables.'' \emph{Journal    of the Royal Statistical Society, Series A}. 167(3): 385445.}\examples{   \dontrun{## simulated data example 1set.seed(3920)n <- 100r0 <- rpois(n, 2000)r1 <- round(runif(n, 100, 4000))p0.true <- pnorm(-1.5 + 1:n/(n/2))p1.true <- pnorm(1.0 - 1:n/(n/4))y0 <- rbinom(n, r0, p0.true)y1 <- rbinom(n, r1, p1.true)c0 <- y0 + y1c1 <- (r0+r1) - c0## plot datadtomogplot(r0, r1, c0, c1, delay=0.1)## fit dynamic modelpost1 <- MCMCdynamicEI(r0,r1,c0,c1, mcmc=40000, thin=5, verbose=100,                    seed=list(NA, 1))## fit exchangeable hierarchical model post2 <- MCMChierEI(r0,r1,c0,c1, mcmc=40000, thin=5, verbose=100,                    seed=list(NA, 2))p0meanDyn <- colMeans(post1)[1:n]p1meanDyn <- colMeans(post1)[(n+1):(2*n)]p0meanHier <- colMeans(post2)[1:n]p1meanHier <- colMeans(post2)[(n+1):(2*n)]## plot truth and posterior meanspairs(cbind(p0.true, p0meanDyn, p0meanHier, p1.true, p1meanDyn, p1meanHier))## simulated data example 2set.seed(8722)n <- 100r0 <- rpois(n, 2000)r1 <- round(runif(n, 100, 4000))p0.true <- pnorm(-1.0 + sin(1:n/(n/4)))p1.true <- pnorm(0.0 - 2*cos(1:n/(n/9)))y0 <- rbinom(n, r0, p0.true)y1 <- rbinom(n, r1, p1.true)c0 <- y0 + y1c1 <- (r0+r1) - c0## plot datadtomogplot(r0, r1, c0, c1, delay=0.1)## fit dynamic modelpost1 <- MCMCdynamicEI(r0,r1,c0,c1, mcmc=40000, thin=5, verbose=100,                    seed=list(NA, 1))## fit exchangeable hierarchical model post2 <- MCMChierEI(r0,r1,c0,c1, mcmc=40000, thin=5, verbose=100,                    seed=list(NA, 2))p0meanDyn <- colMeans(post1)[1:n]p1meanDyn <- colMeans(post1)[(n+1):(2*n)]p0meanHier <- colMeans(post2)[1:n]p1meanHier <- colMeans(post2)[(n+1):(2*n)]## plot truth and posterior meanspairs(cbind(p0.true, p0meanDyn, p0meanHier, p1.true, p1meanDyn, p1meanHier))   }}\keyword{models}\seealso{\code{\link{MCMChierEI}},  \code{\link[coda]{plot.mcmc}},\code{\link[coda]{summary.mcmc}}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -