📄 mcmcirtkdrob.rd
字号:
\eqn{(K+1) \times items}{(K+1) x items}.} \item{k0}{\eqn{\delta_0}{delta0} is constrained to lie in the interval between 0 and \code{k0}.} \item{k1}{\eqn{\delta_1}{delta1} is constrained to lie in the interval between 0 and \code{k1}.} \item{c0}{Parameter governing the prior for \eqn{\delta_0}{delta0}. \eqn{\delta_0}{delta0} divided by \code{k0} is assumed to be follow a beta distribution with first parameter \code{c0}.} \item{d0}{Parameter governing the prior for \eqn{\delta_0}{delta0}. \eqn{\delta_0}{delta0} divided by \code{k0} is assumed to be follow a beta distribution with second parameter \code{d0}.} \item{c1}{Parameter governing the prior for \eqn{\delta_1}{delta1}. \eqn{\delta_1}{delta1} divided by \code{k1} is assumed to be follow a beta distribution with first parameter \code{c1}.} \item{d1}{Parameter governing the prior for \eqn{\delta_1}{delta1}. \eqn{\delta_1}{delta1} divided by \code{k1} is assumed to be follow a beta distribution with second parameter \code{d1}.} \item{store.item}{A switch that determines whether or not to store the item parameters for posterior analysis. \emph{NOTE: This typically takes an enormous amount of memory, so should only be used if the chain is thinned heavily, or for applications with a small number of items}. By default, the item parameters are not stored.} \item{store.ability}{A switch that determines whether or not to store the subject abilities for posterior analysis. By default, the item parameters are all stored.} \item{drop.constant.items}{A switch that determines whether or not items that have no variation should be deleted before fitting the model. Default = TRUE.} \item{...}{further arguments to be passed} }\value{ An mcmc object that contains the posterior sample. This object can be summarized by functions provided by the coda package.}\details{ \code{MCMCirtKdRob} simulates from the posterior using the slice sampling algorithm of Neal (2003). The simulation proper is done in compiled C++ code to maximize efficiency. Please consult the coda documentation for a comprehensive list of functions that can be used to analyze the posterior sample. The model takes the following form. We assume that each subject has an subject ability (ideal point) denoted \eqn{\theta_j}{theta_j} \eqn{(K \times 1)}{(K x 1)}, and that each item has a scalar difficulty parameter \eqn{\alpha_i}{alpha_i} and discrimination parameter \eqn{\beta_i}{beta_i} \eqn{(K \times 1)}{(K x 1)}. The observed choice by subject \eqn{j}{j} on item \eqn{i}{i} is the observed data matrix which is \eqn{(I \times J)}{(I * J)}. The probability that subject \eqn{j}{j} answers item \eqn{i}{i} correctly is assumed to be: \deqn{\pi_{ij} = \delta_0 + (1 - \delta_0 - \delta_1) /(1+\exp(\alpha_i - \beta_i \theta_j))}{pi_{ij} = delta0 + (1 - delta0 - delta1) / (1 + exp(alpha_i - beta_i * theta_j))} This model was discussed in Bafumi et al. (2005). We assume the following priors. For the subject abilities (ideal points) we assume independent standard Normal priors: \deqn{\theta_{j,k} \sim \mathcal{N}(0,1)}{theta_j,k ~ N(0, 1)} These cannot be changed by the user. For each item parameter, we assume independent Normal priors: \deqn{\left[\alpha_i, \beta_i \right]' \sim \mathcal{N}_{(K+1)} (b_{0,i},B_{0,i})}{[alpha_i beta_i]' ~ N_(K+1) (b_0,i, B_0,i)} Where \eqn{B_{0,i}}{B_0,i} is a diagonal matrix. One can specify a separate prior mean and precision for each item parameter. We also assume \eqn{\delta_0 / k_0 \sim \mathcal{B}eta(c_0, d_0)}{delta0/k0 ~ Beta(c0, d0)} and \eqn{\delta_1 / k_1 \sim \mathcal{B}eta(c_1, d_1)}{delta1/k1 ~ Beta(c1, d1)}. The model is identified by constraints on the item parameters and / or ability parameters. See Rivers (2004) for a discussion of identification of IRT models. As is the case with all measurement models, make sure that you have plenty of free memory, especially when storing the item parameters.}\references{ James H. Albert. 1992. ``Bayesian Estimation of Normal Ogive Item Response Curves Using Gibbs Sampling." \emph{Journal of Educational Statistics}. 17: 251-269. Joseph Bafumi, Andrew Gelman, David K. Park, and Noah Kaplan. 2005. ``Practical Issues in Implementing and Understanding Bayesian Ideal Point Estimation.'' \emph{Political Analysis}. Joshua Clinton, Simon Jackman, and Douglas Rivers. 2004. ``The Statistical Analysis of Roll Call Data." \emph{American Political Science Review}. 98: 355-370. Simon Jackman. 2001. ``Multidimensional Analysis of Roll Call Data via Bayesian Simulation.'' \emph{Political Analysis.} 9: 227-241. Valen E. Johnson and James H. Albert. 1999. \emph{Ordinal Data Modeling}. Springer: New York. Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. \emph{Scythe Statistical Library 1.0.} \url{http://scythe.wustl.edu}. Radford Neal. 2003. ``Slice Sampling'' (with discussion). \emph{Annals of Statistics}, 31: 705-767. Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2002. \emph{Output Analysis and Diagnostics for MCMC (CODA)}. \url{http://www-fis.iarc.fr/coda/}. Douglas Rivers. 2004. ``Identification of Multidimensional Item-Response Models." Stanford University, typescript.}\examples{ \dontrun{ ## Court example with ability (ideal point) and ## item (case) constraints data(SupremeCourt) post1 <- MCMCirtKdRob(t(SupremeCourt), dimensions=1, burnin=500, mcmc=5000, thin=1, B0=.25, store.item=TRUE, store.ability=TRUE, ability.constraints=list("Thomas"=list(1,"+"), "Stevens"=list(1,-4)), item.constraints=list("1"=list(2,"-")), verbose=50) plot(post1) summary(post1) ## Senate example with ability (ideal point) constraints data(Senate) namestring <- as.character(Senate$member) namestring[78] <- "CHAFEE1" namestring[79] <- "CHAFEE2" namestring[59] <- "SMITH.NH" namestring[74] <- "SMITH.OR" rownames(Senate) <- namestring post2 <- MCMCirtKdRob(Senate[,6:677], dimensions=1, burnin=1000, mcmc=5000, thin=1, ability.constraints=list("KENNEDY"=list(1,-4), "HELMS"=list(1, 4), "ASHCROFT"=list(1,"+"), "BOXER"=list(1,"-"), "KERRY"=list(1,"-"), "HATCH"=list(1,"+")), B0=0.1, store.ability=TRUE, store.item=FALSE, verbose=5, k0=0.15, k1=0.15, delta0.start=0.13, delta1.start=0.13) plot(post2) summary(post2) }}\keyword{models}\seealso{\code{\link[coda]{plot.mcmc}},\code{\link[coda]{summary.mcmc}},\code{\link[MCMCpack]{MCMCirt1d}}, \code{\link[MCMCpack]{MCMCirtKd}}}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -