⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mcmcirtkdrob.rd

📁 使用R语言的马尔科夫链蒙特卡洛模拟(MCMC)源代码程序。
💻 RD
📖 第 1 页 / 共 2 页
字号:
\name{MCMCirtKdRob}\alias{MCMCirtKdRob}\title{Markov Chain Monte Carlo for Robust K-Dimensional Item Response Theory  Model}\description{  This function generates a posterior sample from a  Robust K-dimensional item response theory (IRT) model with logistic  link, independent standard normal priors on the subject  abilities (ideal points), and independent normal priors on the  item parameters.  The user supplies data and priors, and a sample  from the posterior distribution is returned as an mcmc object, which can be  subsequently analyzed with functions provided in the coda  package.}  \usage{MCMCirtKdRob(datamatrix, dimensions, item.constraints=list(),   ability.constraints=list(), burnin = 500, mcmc = 5000, thin=1,    interval.method="step", theta.w=0.5, theta.mp=4,    alphabeta.w=1.0, alphabeta.mp=4, delta0.w=NA, delta0.mp=3,    delta1.w=NA, delta1.mp=3, verbose = FALSE, seed = NA,    theta.start = NA, alphabeta.start = NA,    delta0.start = NA, delta1.start = NA,    b0 = 0, B0=0, k0=.1, k1=.1, c0=1, d0=1,    c1=1, d1=1, store.item=TRUE, store.ability=FALSE,    drop.constant.items=TRUE, ... )  }\arguments{    \item{datamatrix}{The matrix of data.  Must be 0, 1, or missing values.      It is of dimensionality subjects by items.}    \item{dimensions}{The number of dimensions in the latent space.}        \item{item.constraints}{List of lists specifying possible equality    or simple inequality constraints on the item parameters. A typical    entry in the list has one of three forms: \code{rowname=list(d,c)}    which will constrain the dth item parameter for the item named    rowname to be equal to c, \code{rowname=list(d,"+")} which will    constrain the dth item parameter for the item named rowname to be    positive, and \code{rowname=list(d, "-")} which will constrain the dth    item parameter for the item named rowname to be negative. If    datamatrix is a    matrix without row names defaults names of ``V1", ``V2", ... , etc    will be used. In a \eqn{K}{K}-dimensional model,    the first item parameter for    item \eqn{i}{i} is the difficulty parameter (\eqn{\alpha_i}{alpha_i}),    the second item parameter is the discrimation parameter on dimension    1 (\eqn{\beta_{i,1}}{beta_{i,1}}), the third item parameter is the    discrimation parameter on dimension 2    (\eqn{\beta_{i,2}}{beta_{i,2}}), ...,  and the \eqn{(K+1)}{(K+1)}th    item parameter    is the discrimation parameter on dimension \eqn{K}{K}    (\eqn{\beta_{i,K}}{beta_{i,K}}).     The item difficulty parameters (\eqn{\alpha}{alpha}) should    generally not be constrained.     }        \item{ability.constraints}{List of lists specifying possible equality    or simple inequality constraints on the ability parameters. A typical    entry in the list has one of three forms: \code{colname=list(d,c)}    which will constrain the dth ability parameter for the subject named    colname to be equal to c, \code{colname=list(d,"+")} which will    constrain the dth ability parameter for the subject named colname to be    positive, and \code{colname=list(d, "-")} which will constrain the dth    ability parameter for the subject named colname to be negative. If    datamatrix  is a    matrix without column names defaults names of ``V1", ``V2", ... , etc    will be used.}    \item{burnin}{The number of burn-in iterations for the sampler.}    \item{mcmc}{The number of iterations for the sampler after burn-in.}    \item{thin}{The thinning interval used in the simulation.  The number of    iterations must be divisible by this value.}  \item{interval.method}{Method for finding the slicing interval. Can    be equal to either \code{step} in which case the stepping out    algorithm of Neal (2003) is used or \code{doubling} in which case the    doubling procedure of Neal (2003) is used. The stepping out method    tends to be faster on a per-iteration basis as it typically requires few    function calls. The doubling method expands the initial interval    more quickly which makes the Markov chain mix somewhat more    quickly-- at least in some situations. }    \item{theta.w}{The initial width of the slice sampling interval for    each ability parameter (the elements of \eqn{\theta}{theta})}    \item{theta.mp}{The parameter governing the maximum possible width of    the slice interval for each ability parameter (the elements of    \eqn{\theta}{theta}). If \code{interval.method="step"} then the maximum    width is \code{theta.w * theta.mp}.    If \code{interval.method="doubling"}    then the maximum width is \code{theta.w * 2^theta.mp}. }     \item{alphabeta.w}{The initial width of the slice sampling interval for    each item parameter (the elements of \eqn{\alpha}{alpha} and    \eqn{\beta}{beta})}    \item{alphabeta.mp}{ The parameter governing the maximum possible width of    the slice interval for each item  parameters (the elements of    \eqn{\alpha}{alpha} and \eqn{\beta}{beta}). If    \code{interval.method="step"} then the maximum width is    \code{alphabeta.w * alphabeta.mp}.    If \code{interval.method="doubling"}    then the maximum width is \code{alphabeta.w * 2^alphabeta.mp}. }     \item{delta0.w}{The initial width of the slice sampling interval for    \eqn{\delta_0}{delta0}}    \item{delta0.mp}{The parameter governing the maximum possible width of    the slice interval for \eqn{\delta_0}{delta0}. If    \code{interval.method="step"} then the maximum width is    \code{delta0.w * delta0.mp}. If \code{interval.method="doubling"}    then the maximum width is \code{delta0.w * 2^delta0.mp}. }    \item{delta1.w}{The initial width of the slice sampling interval for    \eqn{\delta_1}{delta1}}    \item{delta1.mp}{The parameter governing the maximum possible width of    the slice interval for \eqn{\delta_1}{delta1}. If    \code{interval.method="step"} then the maximum width is    \code{delta1.w * delta1.mp}. If \code{interval.method="doubling"}    then the maximum width is \code{delta1.w * 2^delta1.mp}. }    \item{verbose}{A switch which determines whether or not the progress of      the sampler is printed to the screen.  If verbose > 0, the      iteration number with be printed to the screen every verbose'th      iteration.}         \item{seed}{The seed for the random number generator.  If NA, the Mersenne      Twister generator is used with default seed 12345; if an integer is       passed it is used to seed the Mersenne twister.  The user can also      pass a list of length two to use the L'Ecuyer random number generator,      which is suitable for parallel computation.  The first element of the      list is the L'Ecuyer seed, which is a vector of length six or NA (if NA       a default seed of \code{rep(12345,6)} is used).  The second element of       list is a positive substream number. See the MCMCpack       specification for more details.}    \item{theta.start}{The starting values for the ability parameters      \eqn{\theta}{theta}. Can be either a scalar or a matrix with      number of rows equal to the number of subjects and number of      columns equal to the dimension \eqn{K}{K} of the latent space. If      \code{theta.start=NA} then starting values will be chosen that are      0 for unconstrained subjects, -0.5 for subjects with negative      inequality constraints and 0.5 for subjects with positive inequality      constraints. }        \item{alphabeta.start}{The starting values for the    \eqn{\alpha}{alpha} and \eqn{\beta}{beta} difficulty and    discrimination parameters. If \code{alphabeta.start} is set to a    scalar the starting value for all unconstrained item parameters will    be set to that scalar. If \code{alphabeta.start} is a matrix of    dimension \eqn{(K+1) \times items}{(K+1) x items} then the    \code{alphabeta.start} matrix is used as the starting values (except    for equality-constrained elements). If \code{alphabeta.start} is set    to \code{NA} (the default) then starting values for unconstrained    elements are set to values generated from a series of proportional    odds logistic regression fits, and starting values for inequality    constrained elements are set to either 1.0 or -1.0 depending on the    nature of the constraints. }    \item{delta0.start}{The starting value for the      \eqn{\delta_0}{delta0} parameter.}        \item{delta1.start}{The starting value for the      \eqn{\delta_1}{delta1} parameter.}        \item{b0}{The prior means of the    \eqn{\alpha}{alpha} and \eqn{\beta}{beta} difficulty and    discrimination parameters, stacked for all items.    If a scalar is passed, it    is used as the prior mean for all items.}    \item{B0}{The prior precisions (inverse variances) of the    independent Normal prior on the item parameters.    Can be either a scalar or a matrix of dimension

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -