📄 postprobmod.rd
字号:
\name{PostProbMod}\alias{PostProbMod}\title{Calculate Posterior Probability of Model}\description{This function takes an object of class \code{BayesFactor} and calculatesthe posterior probability that each model under study is correct giventhat one of the models under study is correct.}\usage{PostProbMod(BF, prior.probs=1)}\arguments{ \item{BF}{An object of class \code{BayesFactor}.} \item{prior.probs}{The prior probabilities that each model is correct. Can be either a scalar or array. Must be positive. If the sum of the prior probabilities is not equal to 1 prior.probs will be normalized so that it does sum to unity.}}\value{ An array holding the posterior probabilities that each model under study is correct given that one of the models under study is correct.}\examples{\dontrun{data(birthwt)post1 <- MCMCregress(bwt~age+lwt+as.factor(race) + smoke + ht, data=birthwt, b0=c(2700, 0, 0, -500, -500, -500, -500), B0=c(1e-6, .01, .01, 1.6e-5, 1.6e-5, 1.6e-5, 1.6e-5), c0=10, d0=4500000, marginal.likelihood="Chib95", mcmc=10000) post2 <- MCMCregress(bwt~age+lwt+as.factor(race) + smoke, data=birthwt, b0=c(2700, 0, 0, -500, -500, -500), B0=c(1e-6, .01, .01, 1.6e-5, 1.6e-5, 1.6e-5), c0=10, d0=4500000, marginal.likelihood="Chib95", mcmc=10000)post3 <- MCMCregress(bwt~as.factor(race) + smoke + ht, data=birthwt, b0=c(2700, -500, -500, -500, -500), B0=c(1e-6, 1.6e-5, 1.6e-5, 1.6e-5, 1.6e-5), c0=10, d0=4500000, marginal.likelihood="Chib95", mcmc=10000)BF <- BayesFactor(post1, post2, post3)mod.probs <- PostProbMod(BF)print(mod.probs)}}\concept{Bayes factor}\concept{model comparison}\seealso{\code{\link{MCMCregress}}}\keyword{models}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -