📄 dtomog.rd
字号:
\name{dtomogplot}\alias{dtomogplot}\title{Dynamic Tomography Plot}\description{ dtomogplot is used to produce a tomography plot (see King, 1997) for a series of temporally ordered, partially observed 2 x 2 contingency tables.} \usage{dtomogplot(r0, r1, c0, c1, time.vec=NA, delay=0, xlab="fraction of r0 in c0 (p0)", ylab="fraction of r1 in c0 (p1)", color.palette=heat.colors, bgcol="black", ...)}\arguments{ \item{r0}{An \eqn{(ntables \times 1)}{(ntables * 1)} vector of row sums from row 0.} \item{r1}{An \eqn{(ntables \times 1)}{(ntables * 1)} vector of row sums from row 1.} \item{c0}{An \eqn{(ntables \times 1)}{(ntables * 1)} vector of column sums from column 0.} \item{c1}{An \eqn{(ntables \times 1)}{(ntables * 1)} vector of column sums from column 1.} \item{time.vec}{Vector of time periods that correspond to the elements of \eqn{r_0}{r0}, \eqn{r_1}{r1}, \eqn{c_0}{c0}, and \eqn{c_1}{c1}.} \item{delay}{Time delay in seconds between the plotting of the tomography lines. Setting a positive delay is useful for visualizing temporal dependence.} \item{xlab}{The x axis label for the plot.} \item{ylab}{The y axis label for the plot.} \item{color.palette}{Color palette to be used to encode temporal patterns.} \item{bgcol}{The background color for the plot.} \item{...}{further arguments to be passed} }\details{ Consider the following partially observed 2 by 2 contingency table:\cr \cr \tabular{llll}{ \tab | \eqn{Y=0} \tab | \eqn{Y=1} \tab | \cr - - - - - \tab - - - - - \tab - - - - - \tab - - - - - \cr \eqn{X=0} \tab | \eqn{Y_0}{Y0} \tab | \tab | \eqn{r_0}{r0}\cr - - - - - \tab - - - - - \tab - - - - - \tab - - - - - \cr \eqn{X=1} \tab | \eqn{Y_1}{Y1} \tab | \tab | \eqn{r_1}{r1}\cr - - - - - \tab - - - - - \tab - - - - - \tab - - - - - \cr \tab | \eqn{c_0}{c0} \tab | \eqn{c_1}{c1} \tab | \eqn{N}\cr } where \eqn{r_0}{r0}, \eqn{r_1}{r1}, \eqn{c_0}{c0}, \eqn{c_1}{c1}, and \eqn{N} are non-negative integers that are observed. The interior cell entries are not observed. It is assumed that \eqn{Y_0|r_0 \sim \mathcal{B}inomial(r_0, p_0)}{Y0|r0 ~ Binomial(r0, p0)} and \eqn{Y_1|r_1 \sim \mathcal{B}inomial(r_1, p_1)}{Y1|r1 ~ Binomial(r1,p1)}. This function plots the bounds on the maximum likelihood estimates for (p0, p1) and color codes them by the elements of time.vec. }\keyword{hplot} \references{ Gary King, 1997. \emph{A Solution to the Ecological Inference Problem}. Princeton: Princeton University Press. Jonathan C. Wakefield. 2004. ``Ecological Inference for 2 x 2 Tables.'' \emph{Journal of the Royal Statistical Society, Series A}. 167(3): 385445.Kevin Quinn. 2004. ``Ecological Inference in the Presence of Temporal Dependence." In \emph{Ecological Inference: New MethodologicalStrategies}. Gary King, Ori Rosen, and Martin A. Tanner (eds.). NewYork: Cambridge University Press. }\examples{\dontrun{## simulated data example 1set.seed(3920)n <- 100r0 <- rpois(n, 2000)r1 <- round(runif(n, 100, 4000))p0.true <- pnorm(-1.5 + 1:n/(n/2))p1.true <- pnorm(1.0 - 1:n/(n/4))y0 <- rbinom(n, r0, p0.true)y1 <- rbinom(n, r1, p1.true)c0 <- y0 + y1c1 <- (r0+r1) - c0## plot datadtomogplot(r0, r1, c0, c1, delay=0.1)## simulated data example 2set.seed(8722)n <- 100r0 <- rpois(n, 2000)r1 <- round(runif(n, 100, 4000))p0.true <- pnorm(-1.0 + sin(1:n/(n/4)))p1.true <- pnorm(0.0 - 2*cos(1:n/(n/9)))y0 <- rbinom(n, r0, p0.true)y1 <- rbinom(n, r1, p1.true)c0 <- y0 + y1c1 <- (r0+r1) - c0## plot datadtomogplot(r0, r1, c0, c1, delay=0.1)}}\seealso{\code{\link{MCMChierEI}}, \code{\link{MCMCdynamicEI}},\code{\link{tomogplot}}}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -