⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mcmultinomdirichlet.rd

📁 使用R语言的马尔科夫链蒙特卡洛模拟(MCMC)源代码程序。
💻 RD
字号:
\name{MCmultinomdirichlet}\alias{MCmultinomdirichlet}\title{Monte Carlo Simulation from a Multinomial Likelihood with a    Dirichlet Prior}\description{  This function generates a sample from the posterior distribution  of a multinomial likelihood with a Dirichlet prior.  }  \usage{MCmultinomdirichlet(y, alpha0, mc=1000, ...)}\arguments{    \item{y}{A vector of data (number of successes for each category).}    \item{alpha0}{The vector of parameters of the Dirichlet prior.}    \item{mc}{The number of Monte Carlo draws to make.}            \item{...}{further arguments to be passed}    }\value{   An mcmc object that contains the posterior sample.  This    object can be summarized by functions provided by the coda package.}\details{  \code{MCmultinomdirichlet} directly simulates from the posterior distribution.   This model is designed primarily for instructional use.  \eqn{\pi}{pi}  is the parameter of interest of the multinomial distribution.  It is of  dimension \eqn{(d \times 1)}{(d x 1)}. We assume  a conjugate Dirichlet prior:  \deqn{\pi \sim \mathcal{D}irichlet(\alpha_0)}{pi ~ Dirichlet(alpha0)}  \eqn{y} is a \eqn{(d \times 1)}{(d x 1)} vector of observed data.  }  \examples{\dontrun{## Example from Gelman, et. al. (1995, p. 78)posterior <- MCmultinomdirichlet(c(727,583,137), c(1,1,1), mc=10000)bush.dukakis.diff <- posterior[,1] - posterior[,2]cat("Pr(Bush > Dukakis): ",   sum(bush.dukakis.diff > 0) / length(bush.dukakis.diff), "\n")hist(bush.dukakis.diff)}}\keyword{models}\seealso{\code{\link[coda]{plot.mcmc}},  \code{\link[coda]{summary.mcmc}}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -