⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mcmcregress.r

📁 使用R语言的马尔科夫链蒙特卡洛模拟(MCMC)源代码程序。
💻 R
字号:
## MCMCregress.R samples from the posterior distribution of a Gaussian## linear regression model in R using linked C++ code in Scythe#### Original written by ADM and KQ 5/21/2002## Updated with helper functions ADM 5/28/2004## Modified to meet new developer specification 6/18/2004 KQ## Modified for new Scythe and rngs 7/22/2004 ADM## Modified to handle marginal likelihood calculation 1/26/2006 KQ"MCMCregress" <-  function(formula, data=parent.frame(), burnin = 1000, mcmc = 10000,           thin=1, verbose = 0, seed = NA, beta.start = NA,           b0 = 0, B0 = 0, c0 = 0.001, d0 = 0.001,           marginal.likelihood = c("none", "Laplace", "Chib95"),           ...) {        ## checks    check.offset(list(...))    check.mcmc.parameters(burnin, mcmc, thin)    cl <- match.call()            ## seeds    seeds <- form.seeds(seed)     lecuyer <- seeds[[1]]    seed.array <- seeds[[2]]    lecuyer.stream <- seeds[[3]]    ## form response and model matrices    holder <- parse.formula(formula, data)    Y <- holder[[1]]    X <- holder[[2]]    xnames <- holder[[3]]        K <- ncol(X)  # number of covariates            ## starting values and priors    beta.start <- coef.start(beta.start, K, formula, family=gaussian, data)    mvn.prior <- form.mvn.prior(b0, B0, K)    b0 <- mvn.prior[[1]]    B0 <- mvn.prior[[2]]    check.ig.prior(c0, d0)    ## get marginal likelihood argument    marginal.likelihood  <- match.arg(marginal.likelihood)    B0.eigenvalues <- eigen(B0)$values    if (min(B0.eigenvalues) < 0){      stop("B0 is not positive semi-definite.\nPlease respecify and call again.\n")    }    if (isTRUE(all.equal(min(B0.eigenvalues), 0))){      if (marginal.likelihood != "none"){        warning("Cannot calculate marginal likelihood with improper prior\n")        marginal.likelihood <- "none"      }    }    logmarglike <- NULL    chib <- 0    if (marginal.likelihood == "Chib95"){      chib <- 1    }        ## define holder for posterior sample    sample <- matrix(data=0, mcmc/thin, K+1)    posterior <- NULL         ## call C++ code to draw sample    auto.Scythe.call(output.object="posterior", cc.fun.name="MCMCregress",                      sample.nonconst=sample, Y=Y, X=X,                      burnin=as.integer(burnin),                     mcmc=as.integer(mcmc), thin=as.integer(thin),                     lecuyer=as.integer(lecuyer),                      seedarray=as.integer(seed.array),                     lecuyerstream=as.integer(lecuyer.stream),                     verbose=as.integer(verbose), betastart=beta.start,                     b0=b0, B0=B0, c0=as.double(c0), d0=as.double(d0),                     logmarglikeholder.nonconst=as.double(0.0),                     chib=as.integer(chib))    ## get marginal likelihood if Chib95    if (marginal.likelihood == "Chib95"){      logmarglike <- posterior$logmarglikeholder    }    ## marginal likelihood calculation if Laplace    if (marginal.likelihood == "Laplace"){      theta.start <- c(beta.start, log(0.5*var(Y)))      optim.out <- optim(theta.start, logpost.regress, method="BFGS",                         control=list(fnscale=-1),                         hessian=TRUE, y=Y, X=X, b0=b0, B0=B0, c0=c0, d0=d0)      theta.tilde <- optim.out$par      beta.tilde <- theta.tilde[1:K]      sigma2.tilde <- exp(theta.tilde[K+1])            Sigma.tilde <- solve(-1*optim.out$hessian)            logmarglike <- (length(theta.tilde)/2)*log(2*pi) +        log(sqrt(det(Sigma.tilde))) +           logpost.regress(theta.tilde, Y, X, b0, B0, c0, d0)          }        ## pull together matrix and build MCMC object to return    output <- form.mcmc.object(posterior,                               names=c(xnames, "sigma2"),                               title="MCMCregress Posterior Sample",                               y=Y, call=cl,                               logmarglike=logmarglike                               )    return(output)  }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -