⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mcmcpoisson.r

📁 使用R语言的马尔科夫链蒙特卡洛模拟(MCMC)源代码程序。
💻 R
字号:
### sample from the posterior distribution of a Poisson regression### model in R using linked C++ code in Scythe###### ADM 1/24/2003## KQ 3/17/2003 [bug fix]## Modified to meet new developer specification 7/15/2004 KQ## Modified for new Scythe and rngs 7/26/2004 KQ## Modified to handle marginal likelihood calculation 1/27/2006 KQ"MCMCpoisson" <-  function(formula, data = parent.frame(), burnin = 1000, mcmc = 10000,           thin=1, tune=1.1, verbose = 0, seed = NA, beta.start = NA,           b0 = 0, B0 = 0,           marginal.likelihood = c("none", "Laplace"),...) {        ## checks    check.offset(list(...))    check.mcmc.parameters(burnin, mcmc, thin)    cl <- match.call()            ## seeds    seeds <- form.seeds(seed)     lecuyer <- seeds[[1]]    seed.array <- seeds[[2]]    lecuyer.stream <- seeds[[3]]    ## form response and model matrices    holder <- parse.formula(formula, data)    Y <- holder[[1]]    X <- holder[[2]]    xnames <- holder[[3]]        K <- ncol(X)  # number of covariates            ## starting values and priors    beta.start <- coef.start(beta.start, K, formula, family=poisson, data)    mvn.prior <- form.mvn.prior(b0, B0, K)    b0 <- mvn.prior[[1]]    B0 <- mvn.prior[[2]]    ## get marginal likelihood argument    marginal.likelihood  <- match.arg(marginal.likelihood)    B0.eigenvalues <- eigen(B0)$values    if (min(B0.eigenvalues) < 0){      stop("B0 is not positive semi-definite.\nPlease respecify and call again.\n")    }    if (isTRUE(all.equal(min(B0.eigenvalues), 0))){      if (marginal.likelihood != "none"){        warning("Cannot calculate marginal likelihood with improper prior\n")        marginal.likelihood <- "none"      }    }    logmarglike <- NULL        ## form the tuning parameter    tune <- vector.tune(tune, K)    V <- vcov(glm(formula=formula, data=data, family=poisson))        ## test y non-negative    if (sum(Y < 0) > 0) {      cat("\n Elements of Y negative. ")      stop("\n Check data and call MCMCpoisson() again. \n")     }       ## define holder for posterior sample    sample <- matrix(data=0, mcmc/thin, dim(X)[2] )        ## marginal likelihood calculation if Laplace    if (marginal.likelihood == "Laplace"){      theta.start <- beta.start      optim.out <- optim(theta.start, logpost.poisson, method="BFGS",                         control=list(fnscale=-1),                         hessian=TRUE, y=Y, X=X, b0=b0, B0=B0)            theta.tilde <- optim.out$par      beta.tilde <- theta.tilde[1:K]            Sigma.tilde <- solve(-1*optim.out$hessian)            logmarglike <- (length(theta.tilde)/2)*log(2*pi) +        log(sqrt(det(Sigma.tilde))) +           logpost.poisson(theta.tilde, Y, X, b0, B0)          }    posterior <- NULL        ## call C++ code to draw sample    auto.Scythe.call(output.object="posterior", cc.fun.name="MCMCpoisson",                     sample.nonconst=sample, Y=Y, X=X,                     burnin=as.integer(burnin),                     mcmc=as.integer(mcmc), thin=as.integer(thin),                     tune=tune, lecuyer=as.integer(lecuyer),                     seedarray=as.integer(seed.array),                     lecuyerstream=as.integer(lecuyer.stream),                     verbose=as.integer(verbose), betastart=beta.start,                     b0=b0, B0=B0, V=V)         ## put together matrix and build MCMC object to return    output <- form.mcmc.object(posterior, names=xnames,                               title="MCMCpoisson Posterior Sample",                               y=Y, call=cl, logmarglike=logmarglike)    return(output)      }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -