📄 example_280xecap_apwm.c
字号:
// TI File $Revision: /main/5 $
// Checkin $Date: December 3, 2004 14:00:04 $
// Modified by LSD_Hanbing to suit the LSD_EVM320F2801X, April 23,2007
//###########################################################################
//
// FILE: Example_280xECap_apwm.c
//
// TITLE: DSP280x ECAP APWM Example
//
// ASSUMPTIONS:
//
// This program requires the DSP280x header files.
//
// Monitor eCAP1 - eCAP2 pins on a oscilloscope as
// described below.
//
// eCAP1 on GPIO24
// eCAP2 on GPIO7
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 280x Boot Mode table is shown below.
// For information on configuring the boot mode of an LSD_EVM320F2801X,
// please refer to the documentation included with the LSD_EVM320F2801X,
//
// Boot GPIO18 GPIO29 GPIO34
// Mode SPICLKA SCITXDA
// SCITXB
// -------------------------------------
// Flash 1 1 1
// SCI-A 1 1 0
// SPI-A 1 0 1
// I2C-A 1 0 0
// ECAN-A 0 1 1
// SARAM 0 1 0 <- "boot to SARAM"
// OTP 0 0 1
// I/0 0 0 0
//
//
//
// DESCRIPTION:
//
// This program sets up the eCAP pins in the APWM mode.
//
// eCAP1 will come out on the GPIO24 pin
// This pin is configured to vary between 5 Hz and 10 Hz using
// the shadow registers to load the next period/compare values
//
// eCAP2 will come out on the GPIO7 pin
// this pin is configured as a 5 Hz output
//
// All frequencies assume a 12 Mhz input clock. The XCLKOUT pin
// should show 60Mhz.
//
// Watch Variables:
//
// ERR_LOG (bit 15 is set to remind user to visually
// check the PWM action on the CAP pins. The default
// configuration in this example should output a 5 Hz
// PWM signal on the ECAP1 and the ECAP2 pins with a
// 60Mhz SYSCLKOUT, assuming a 12Mhz input clock is used.
//
//###########################################################################
// Original Author: D.F.
//
// $TI Release: DSP280x, DSP2801x Header Files V1.41 $
// $Release Date: August 7th, 2006 $
//###########################################################################
#include "DSP280x_Device.h" // DSP280x Headerfile Include File
#include "DSP280x_Examples.h" // DSP280x Examples Include File
// Global variables
Uint16 direction = 0;
void main(void)
{
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP280x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP280x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
EALLOW;
GpioCtrlRegs.GPAMUX1.all = 0x0; // GPIO pin
GpioCtrlRegs.GPADIR.all = 0xFF; // Output pin
GpioDataRegs.GPADAT.all =0xFF; // Close LEDs
EDIS;
// Initialize the GPIO pins for eCAP.
// This function is found in the DSP280x_ECap.c file
InitECapGpio();
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP280x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP280x_DefaultIsr.c.
// This function is found in DSP280x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
// No interrupts used for this example.
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP280x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
// Step 5. User specific code
// Setup APWM mode on CAP1, set period and compare registers
ECap1Regs.ECCTL2.bit.CAP_APWM = 1; // Enable APWM mode
ECap1Regs.CAP1 = 0x00B71B00; // Set Period value
ECap1Regs.CAP2 = 0x005B8D80; // Set Compare value
ECap1Regs.ECCLR.all = 0x0FF; // Clear pending interrupts
ECap1Regs.ECEINT.bit.CTR_EQ_CMP = 1; // enable Compare Equal Int
// Setup APWM mode on CAP2, set period and compare registers
ECap2Regs.ECCTL2.bit.CAP_APWM = 1; // Enable APWM mode
ECap2Regs.CAP1 = 0x00B71B00; // Set Period value
ECap2Regs.CAP2 = 0x005B8D80; // Set Compare value
ECap2Regs.ECCLR.all = 0x0FF; // Clear pending interrupts
ECap1Regs.ECEINT.bit.CTR_EQ_CMP = 1; // enable Compare Equal Int
// Start counters
ECap1Regs.ECCTL2.bit.TSCTRSTOP = 1;
ECap2Regs.ECCTL2.bit.TSCTRSTOP = 1;
for(;;)
{
// set next duty cycle to 50%
ECap1Regs.CAP1 >> 1;
// vary freq between 5 Hz and 10 Hz
if(ECap1Regs.CAP1 >= 0x00B71B00)
{
direction = 0;
} else if (ECap1Regs.CAP1 <= 0x005B8D80)
{
direction = 1;
}
if(direction == 0)
{
ECap1Regs.CAP1 - 300000;
} else
{
ECap1Regs.CAP1 + 300000;
}
}
}
//===========================================================================
// No more.
//===========================================================================
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -