⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 example_280xhrpwm_sfo.c

📁 DSP学习板上的例子程序包括 AD转换 CAN总线 SPI SCI
💻 C
📖 第 1 页 / 共 2 页
字号:
// TI File $Revision: /main/5 $
// Checkin $Date: August 2, 2006   17:02:39 $
// Modified by LSD_Hanbing to suit the LSD_EVM320F2801X, April 25,2007
//###########################################################################
//
// FILE:	Example_280xHRPWM_SFO.c
//
// TITLE:	DSP280x Device HRPWM example 
//
// ASSUMPTIONS:
//
//
//    This program requires the DSP280x header files.  
//
//    Monitor ePWM1-ePWM4 pins on an oscilloscope as described
//    below.
//
//       EPWM1A is on GPIO0
//       EPWM2A is on GPIO2
//       EPWM3A is on GPIO4
//		 EPWM4A is on GPIO6
//
//    As supplied, this project is configured for "boot to SARAM" 
//    operation.  The 280x Boot Mode table is shown below.  
//    For information on configuring the boot mode of an LSD_EVM320F2801X, 
//    please refer to the documentation included with the LSD_EVM320F2801X,  
//
//       Boot      GPIO18     GPIO29    GPIO34
//       Mode      SPICLKA    SCITXDA
//                  SCITXB
//       -------------------------------------
//       Flash       1          1        1
//       SCI-A       1          1        0
//       SPI-A       1          0        1
//       I2C-A       1          0        0
//       ECAN-A      0          1        1        
//       SARAM       0          1        0  <- "boot to SARAM"
//       OTP         0          0        1
//       I/0         0          0        0 
//
//
//
// DESCRIPTION:
//
//       This example modifies the MEP control registers to show edge displacement
//       due to the HRPWM control extension of the respective ePWM module.
//
//       This example calls the following TI's MEP Scale Factor Optimizer (SFO)
//       software library functions:
//
//       void SFO_MepEn(int i);  
//            initialize MEP_Scalefactor[i] dynamically when HRPWM is in use.
// 
//       void SFO_MepDis(int i); 
//            initialize MEP_Scalefactor[i] when HRPWM is not used
//
//       Where MEP_ScaleFactor[5] is a global array variable used by the SFO library   
//
//       This example is intended to explain the HRPWM capabilities. The code can be
//       optimized for code efficiency. Refer to TI's Digital power application 
//       examples and TI Digital Power Supply software libraries for details. 
//
//       All ePWM1A,2A,3A,4A channels (GPIO0, GPIO2, GPIO4, GPIO6) will have fine
//       edge movement due to the HRPWM logic
//
//            1. 3MHz PWM, ePWM1A toggle low/high with MEP control on falling edge
//
//            2. 3MHz PWM, ePWM2A toggle low/high with MEP control on falling edge
//             
//            3. 3MHz PWM, ePWM3A toggle high/low with MEP control on falling edge
//
//            4. 3MHz PWM, ePWM4A toggle high/low with MEP control on falling edge
//
//	To load and run this example:
//            1. Run this example at 60MHz SYSCLKOUT
//            2. Load the Example_280xHRPWM_SFO.gel and observe variables in the watch window
//            3. Activate Real time mode
//            4. Run the code  
//            5. Watch ePWM1A-4A waveforms on a Oscillosope      
//            6. In the watch window:
//               Set the variable UpdateFine = 1  to observe the ePWMxA output
//               with HRPWM capabilites (default)
//               Observe the duty cycle of the waveform changes in fine MEP steps
//            7. In the watch window:
//               Change the variable UpdateFine to 0, to observe the
//               ePWMxA output without HRPWM capabilites
//               Observe the duty cycle of the waveform changes in coarse steps of 10nsec.
//
// IMPORTANT NOTE!!!!!
//
// THE SFO FUNCTION INCLUDED WITH THE HEADER FILE EXAMPLES ONLY SUPPORTS EPWM1-EPWM4
// AN UPDATE IS PLANNED TO SUPPORT EPWM5 AND EPWM6.  LOOK FOR UPDATES ON TI'S WEBSITE
// OR CONTACT THE PRODUCT INFORMATION CENTER.
//
//
//###########################################################################
// $TI Release: DSP280x, DSP2801x Header Files V1.41 $
// $Release Date: August 7th, 2006 $
//###########################################################################


#include "DSP280x_Device.h"     	// DSP280x Headerfile
#include "DSP280x_EPwm_defines.h" 	// useful defines for initialization
#include "SFO.h"					// SFO library headerfile

// Declare your function prototypes here
//---------------------------------------------------------------
void HRPWM1_Config(int);			
void HRPWM2_Config(int);
void HRPWM3_Config(int);
void HRPWM4_Config(int);
void InitSysCtrl(void);
void InitEPwm1Gpio(void);
void InitEPwm2Gpio(void);
void InitEPwm3Gpio(void);  
void InitEPwm4Gpio(void);
void InitPieCtrl(void);
void InitPieVectTable(void);

// General System nets - Useful for debug
Uint16 j,duty, DutyFine, n, UpdateFine;	
volatile int i;
Uint32 temp;

// Global array used by the SFO library 
int16 MEP_ScaleFactor[5];			  


volatile struct EPWM_REGS *ePWM[] = 	
 			 { &EPwm1Regs,	&EPwm1Regs,	&EPwm2Regs,	&EPwm3Regs,	&EPwm4Regs,	&EPwm5Regs,	&EPwm6Regs};		


void main(void)
{

// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP280x_SysCtrl.c file.
   InitSysCtrl();

// Step 2. Initalize GPIO: 
// This example function is found in the DSP280x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio();  // Skipped for this example  
   EALLOW;
   GpioCtrlRegs.GPAMUX1.all = 0x0;    // GPIO pin
   GpioCtrlRegs.GPADIR.all = 0xFF;     // Output pin
   GpioDataRegs.GPADAT.all =0xFF;     // Close LEDs
   EDIS;

// For this case just init GPIO pins for ePWM1, ePWM2, ePWM3, ePWM4
// These functions are in the DSP280x_EPwm.c file
   InitEPwm1Gpio();
   InitEPwm2Gpio();
   InitEPwm3Gpio();  
   InitEPwm4Gpio();

// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts 
   DINT;

// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.  
// This function is found in the DSP280x_PieCtrl.c file.
   InitPieCtrl();
   
// Disable CPU interrupts and clear all CPU interrupt flags:
   IER = 0x0000;
   IFR = 0x0000;
		    
// Initialize the PIE vector table with pointers to the shell Interrupt 
// Service Routines (ISR).  
// This will populate the entire table, even if the interrupt
// is not used in this example.  This is useful for debug purposes.
// The shell ISR routines are found in DSP280x_DefaultIsr.c.
// This function is found in DSP280x_PieVect.c.
   InitPieVectTable();

// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP280x_InitPeripherals.c
// InitPeripherals();  // Not required for this example

// For this example, only initialize the ePWM
// Step 5. User specific code, enable interrupts:

   UpdateFine = 1;
   DutyFine   = 0;

   EALLOW;
   SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;
   EDIS;

//  MEP_ScaleFactor variables iitialization for SFO library functions
    MEP_ScaleFactor[0] = 0;											//Common Variables for SFO functions
	MEP_ScaleFactor[1] = 0;											//SFO for HRPWM1
	MEP_ScaleFactor[2] = 0;											//SFO for HRPWM2
	MEP_ScaleFactor[3] = 0;											//SFO for HRPWM3
	MEP_ScaleFactor[4] = 0;											//SFO for HRPWM4

// 	MEP_ScaleFactor variables initialized using function SFO_MepDis
	while ( MEP_ScaleFactor[1] == 0 ) SFO_MepDis(1);				//SFO for HRPWM1 
	while ( MEP_ScaleFactor[2] == 0 ) SFO_MepDis(2);				//SFO for HRPWM2
	while ( MEP_ScaleFactor[3] == 0 ) SFO_MepDis(3);				//SFO for HRPWM3
	while ( MEP_ScaleFactor[4] == 0 ) SFO_MepDis(4);				//SFO for HRPWM4

// 	Initialize a common seed variable MEP_ScaleFactor[0] required for all SFO functions	
	MEP_ScaleFactor[0] = MEP_ScaleFactor[1];                        //Common Variable for SFO library functions
	
// Some useful Period vs Frequency values for SYSCLKOUT = 100MHz
//	Period	Frequency
//	1000	60 KHz
//	800		75 KHz
//	600		100 KHz
//	500		120 KHz
//	250		240 KHz
//	200		300 KHz
//	100		600 KHz
//	50		1.2 MHz
//	25		2.4 MHz
//	20		3 MHz
//	12		5 MHz
//	10		6 MHz
//	9		6.67 MHz
//	8		7.5 MHz
//	7		8.57 MHz
//	6		10 MHz
//	5		12 MHz
//====================================================================
// ePWM and HRPWM register initializaition
//====================================================================
   HRPWM1_Config(20);	    // ePWM1 target, 3 MHz PWM
   HRPWM2_Config(20);	    // ePWM2 target, 3 MHz PWM
   HRPWM3_Config(20);	    // ePWM3 target, 3 MHz PWM
   HRPWM4_Config(20);	    // ePWM4 target, 3 MHz PWM
   
   EALLOW;
   SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1;

   EDIS;

   for(;;)
   {
     	// Sweep DutyFine as a Q15 number from 0.2 - 0.999 
		for(DutyFine = 0x2300; DutyFine < 0x7000; DutyFine++)
		{
		// Variables
			int16 CMPA_reg_val, CMPAHR_reg_val; 
			int32 temp;
			
			if(UpdateFine)
			{
			/*
			// CMPA_reg_val is calculated as a Q0.
			// Since DutyFine is a Q15 number, and the period is Q0
			// the product is Q15. So to store as a Q0, we shift right
			// 15 bits.
			
			CMPA_reg_val = ((long)DutyFine * EPwm1Regs.TBPRD)>>15;
			
			// This next step is to obtain the remainder which was 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -