⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 example_280xsci_ffdlb_int.c

📁 DSP学习板上的例子程序包括 AD转换 CAN总线 SPI SCI
💻 C
字号:
// TI File $Revision: /main/3 $
// Checkin $Date: December 3, 2004   13:45:40 $
// Modified by LSD_Hanbing to suit the LSD_EVM320F2801X, April 28,2007
//###########################################################################
//
// FILE:   Example_280xSci_FFDLB_int.c
//
// TITLE:  DSP280x Device SCI Digital Loop Back porgram.
// 
//
// ASSUMPTIONS:
//
//    This program requires the DSP280x header files.  
//
//    This program uses the internal loop back test mode of the peripheral. 
//    Other then boot mode pin configuration, no other hardware configuration
//    is required. 
//
//    As supplied, this project is configured for "boot to SARAM" 
//    operation.  The 280x Boot Mode table is shown below.  
//    For information on configuring the boot mode of an LSD_EVM320F2801X, 
//    please refer to the documentation included with the LSD_EVM320F2801X,  
//
//       Boot      GPIO18     GPIO29    GPIO34
//       Mode      SPICLKA    SCITXDA
//                  SCITXB
//       -------------------------------------
//       Flash       1          1        1
//       SCI-A       1          1        0
//       SPI-A       1          0        1
//       I2C-A       1          0        0
//       ECAN-A      0          1        1        
//       SARAM       0          1        0  <- "boot to SARAM"
//       OTP         0          0        1
//       I/0         0          0        0 
//
//   Assumes the device has both SCI-A and SCI-B peripherals.  
//
// DESCRIPTION:
//
//    This program is a SCI example that uses the internal loopback of
//    the peripheral.  Both interrupts and the SCI FIFOs are used.
//
//    A stream of data is sent and then compared to the recieved stream.
//  
//    The SCI-A sent data looks like this:
//    00 01 02 03 04 05 06 07
//    01 02 03 04 05 06 07 08
//    02 03 04 05 06 07 08 09 
//    ....
//    FE FF 00 01 02 03 04 05
//    FF 00 01 02 03 04 05 06
//    etc..
//
//
//    The SCI-B sent data looks like this:
//    FF FE FD FC FB FA F9 F8
//    FE FD FC FB FA F9 F8 F7
//    FD FC FB FA F9 F8 F7 F6 
//    ....
//    01 00 FF FE FD FC FB FA
//    00 FF FE FD FC FB FA F9
//    etc..
//
//    Both patterns are repeated forever.  
//
//    Watch Variables:  
//  
//       SCI-A           SCI-B
//       ----------------------
//       sdataA          sdataB           Data being sent
//       rdataA          rdataB           Data received
//       rdata_pointA    rdata_pointB     Keep track of where we are in the datastream
//                                        This is used to check the incoming data           
//###########################################################################
// Original Source by S.D. 
// 
// $TI Release: DSP280x, DSP2801x Header Files V1.41 $
// $Release Date: August 7th, 2006 $
//###########################################################################



#include "DSP280x_Device.h"     // DSP280x Headerfile Include File
#include "DSP280x_Examples.h"   // DSP280x Examples Include File

#define CPU_FREQ 	150E6
#define SCI_FREQ 	100E3
#define SCI_PRD 	CPU_FREQ/(SCI_FREQ*8)

// Prototype statements for functions found within this file.
interrupt void sciaTxFifoIsr(void);
interrupt void sciaRxFifoIsr(void);
interrupt void scibTxFifoIsr(void);
interrupt void scibRxFifoIsr(void);
void scia_fifo_init(void);
void scib_fifo_init(void);
void error(void);

// Global variables
Uint16 sdataA[8];    // Send data for SCI-A
Uint16 sdataB[8];    // Send data for SCI-B
Uint16 rdataA[8];    // Received data for SCI-A
Uint16 rdataB[8];    // Received data for SCI-A
Uint16 rdata_pointA; // Used for checking the received data
Uint16 rdata_pointB;


void main(void)
{ 
   Uint16 i;

// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP280x_SysCtrl.c file.
   InitSysCtrl();

// Step 2. Initalize GPIO: 
// This example function is found in the DSP280x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio();    
   EALLOW;
   GpioCtrlRegs.GPAMUX1.all = 0x0;    // GPIO pin
   GpioCtrlRegs.GPADIR.all = 0xFF;     // Output pin
   GpioDataRegs.GPADAT.all =0xFF;     // Close LEDs
   EDIS;

// Setup only the GP I/O only for SCI-A and SCI-B functionality
// This function is found in DSP280x_Sci.c
   InitSciGpio();

// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts 
   DINT;

// Initialize PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.  
// This function is found in the DSP280x_PieCtrl.c file.
   InitPieCtrl();

// Disable CPU interrupts and clear all CPU interrupt flags:
   IER = 0x0000;
   IFR = 0x0000;

// Initialize the PIE vector table with pointers to the shell Interrupt 
// Service Routines (ISR).  
// This will populate the entire table, even if the interrupt
// is not used in this example.  This is useful for debug purposes.
// The shell ISR routines are found in DSP280x_DefaultIsr.c.
// This function is found in DSP280x_PieVect.c.
   InitPieVectTable();

// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.  
   EALLOW;	// This is needed to write to EALLOW protected registers
   PieVectTable.SCIRXINTA = &sciaRxFifoIsr;
   PieVectTable.SCITXINTA = &sciaTxFifoIsr;
   PieVectTable.SCIRXINTB = &scibRxFifoIsr;
   PieVectTable.SCITXINTB = &scibTxFifoIsr;
   EDIS;   // This is needed to disable write to EALLOW protected registers 
 
 
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP280x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
   scia_fifo_init();  // Init SCI-A
   scib_fifo_init();  // Init SCI-B
	
// Step 5. User specific code, enable interrupts:
 
// Init send data.  After each transmission this data
// will be updated for the next transmission
   for(i = 0; i<8; i++)
   {
      sdataA[i] = i;
   }

   for(i = 0; i<8; i++)
   {
      sdataB[i] = 0xFF - i;
   }

   rdata_pointA = sdataA[0];
   rdata_pointB = sdataB[0]; 
 
// Enable interrupts required for this example
   PieCtrlRegs.PIECTRL.bit.ENPIE = 1;   // Enable the PIE block
   PieCtrlRegs.PIEIER9.bit.INTx1=1;     // PIE Group 9, INT1
   PieCtrlRegs.PIEIER9.bit.INTx2=1;     // PIE Group 9, INT2
   PieCtrlRegs.PIEIER9.bit.INTx3=1;     // PIE Group 9, INT3
   PieCtrlRegs.PIEIER9.bit.INTx4=1;     // PIE Group 9, INT4
   IER = 0x100;	// Enable CPU INT
   EINT;   

// Step 6. IDLE loop. Just sit and loop forever (optional):	
	for(;;);

} 	

void error(void)
{
    asm("     ESTOP0"); // Test failed!! Stop!
    for (;;);
}


interrupt void sciaTxFifoIsr(void)
{   
    Uint16 i;
    for(i=0; i< 8; i++)
    {
 	   SciaRegs.SCITXBUF=sdataA[i];     // Send data
	}

    for(i=0; i< 8; i++)                 //Increment send data for next cycle
    {
 	   sdataA[i] = (sdataA[i]+1) & 0x00FF;  
	}	

	SciaRegs.SCIFFTX.bit.TXFFINTCLR=1;	// Clear SCI Interrupt flag
	PieCtrlRegs.PIEACK.all|=0x100;      // Issue PIE ACK
}

interrupt void sciaRxFifoIsr(void)
{   
    Uint16 i;
	for(i=0;i<8;i++)
	{
	   rdataA[i]=SciaRegs.SCIRXBUF.all;	 // Read data
	}
	for(i=0;i<8;i++)                     // Check received data
	{
	   if(rdataA[i] != ( (rdata_pointA+i) & 0x00FF) ) error();
	}
	rdata_pointA = (rdata_pointA+1) & 0x00FF;                                 

	SciaRegs.SCIFFRX.bit.RXFFOVRCLR=1;   // Clear Overflow flag
	SciaRegs.SCIFFRX.bit.RXFFINTCLR=1;   // Clear Interrupt flag

	PieCtrlRegs.PIEACK.all|=0x100;       // Issue PIE ack
}

void scia_fifo_init()										
{
   SciaRegs.SCICCR.all =0x0007;   // 1 stop bit,  No loopback 
                                  // No parity,8 char bits,
                                  // async mode, idle-line protocol
   SciaRegs.SCICTL1.all =0x0003;  // enable TX, RX, internal SCICLK, 
                                  // Disable RX ERR, SLEEP, TXWAKE
   SciaRegs.SCICTL2.bit.TXINTENA =1;
   SciaRegs.SCICTL2.bit.RXBKINTENA =1;
   SciaRegs.SCIHBAUD = 0x0000;
   SciaRegs.SCILBAUD = SCI_PRD;
   SciaRegs.SCICCR.bit.LOOPBKENA =1; // Enable loop back  
   SciaRegs.SCIFFTX.all=0xC028;
   SciaRegs.SCIFFRX.all=0x0028;
   SciaRegs.SCIFFCT.all=0x00;

   SciaRegs.SCICTL1.all =0x0023;     // Relinquish SCI from Reset 
   SciaRegs.SCIFFTX.bit.TXFIFOXRESET=1;
   SciaRegs.SCIFFRX.bit.RXFIFORESET=1;	 
     									
     									    									    									
}  

interrupt void scibTxFifoIsr(void)
{       
    Uint16 i;
    for(i=0; i< 8; i++)
    {
 	   ScibRegs.SCITXBUF=sdataB[i];     // Send data
	}

    for(i=0; i< 8; i++)                 //Increment send data for next cycle
    {
 	   sdataB[i] = (sdataB[i]-1) & 0x00FF;  
	}	

	ScibRegs.SCIFFTX.bit.TXFFINTCLR=1;  // Clear Interrupt flag
	PieCtrlRegs.PIEACK.all|=0x100;      // Issue PIE ACK
}

interrupt void scibRxFifoIsr(void)
{
    Uint16 i;
	for(i=0;i<8;i++)
	{
	   rdataB[i]=ScibRegs.SCIRXBUF.all;	 // Read data
	}
	for(i=0;i<8;i++)                     // Check received data
	{
	   if(rdataB[i] != ( (rdata_pointB-i) & 0x00FF) ) error();
	}
	rdata_pointB = (rdata_pointB-1) & 0x00FF; 
	                                
	ScibRegs.SCIFFRX.bit.RXFFOVRCLR=1;  // Clear Overflow flag
	ScibRegs.SCIFFRX.bit.RXFFINTCLR=1; 	// Clear Interrupt flag
	PieCtrlRegs.PIEACK.all|=0x100;  	// Issue PIE ack
}

void scib_fifo_init()										
{
   ScibRegs.SCICCR.all =0x0007;    // 1 stop bit,  No loopback 
                                   // No parity,8 char bits,
                                   // async mode, idle-line protocol
   ScibRegs.SCICTL1.all =0x0003;   // enable TX, RX, internal SCICLK, 
                                   // Disable RX ERR, SLEEP, TXWAKE
   ScibRegs.SCICTL2.bit.TXINTENA =1;
   ScibRegs.SCICTL2.bit.RXBKINTENA =1;
   ScibRegs.SCIHBAUD    =0x0000;
   ScibRegs.SCILBAUD    =SCI_PRD;
   ScibRegs.SCICCR.bit.LOOPBKENA =1; // Enable loop back  
   ScibRegs.SCIFFTX.all=0xC028;
   ScibRegs.SCIFFRX.all=0x0028;
   ScibRegs.SCIFFCT.all=0x00;

   ScibRegs.SCICTL1.all =0x0023;     // Relinquish SCI from Reset 
   ScibRegs.SCIFFTX.bit.TXFIFOXRESET=1;
   ScibRegs.SCIFFRX.bit.RXFIFORESET=1;	 
      
}  

//===========================================================================
// No more.
//===========================================================================

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -