📄 example_280xadcsoc.c
字号:
// TI File $Revision: /main/7 $
// Checkin $Date: September 12, 2005 17:30:05 $
// Modified by LSD_Hanbing to suit the LSD_EVM320F2801X, April 21,2007
//###########################################################################
//
// FILE: Example_280xAdc.c
//
// TITLE: DSP280x ADC Example Program.
//
// ASSUMPTIONS:
//
// This program requires the DSP280x header files.
//
// Make sure the CPU clock speed is properly defined in
// DSP280x_Examples.h before compiling this example.
//
// Connect signals to be converted to A2 and A3.
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 280x Boot Mode table is shown below.
// For information on configuring the boot mode of an LSD_EVM320F2801X,
// please refer to the documentation included with the LSD_EVM320F2801X,
//
// Boot GPIO18 GPIO29 GPIO34
// Mode SPICLKA SCITXDA
// SCITXB
// -------------------------------------
// Flash 1 1 1
// SCI-A 1 1 0
// SPI-A 1 0 1
// I2C-A 1 0 0
// ECAN-A 0 1 1
// SARAM 0 1 0 <- "boot to SARAM"
// OTP 0 0 1
// I/0 0 0 0
//
//
// DESCRIPTION:
//
// This example sets up the PLL in x10/2 mode, divides SYSCLKOUT
// by eight to reach a 7.5Mhz HSPCLK (assuming a 12Mhz XCLKIN).
// Interrupts are enabled and the ePWM1 is setup to generate a periodic
// ADC SOC on SEQ1. Two channels are converted, ADCINA3 and ADCINA2.
//
// Watch Variables:
//
// Voltage1[10] Last 10 ADCRESULT0 values
// Voltage2[10] Last 10 ADCRESULT1 values
// ConversionCount Current result number 0-9
// LoopCount Idle loop counter
//
//
//###########################################################################
//
// Original Author: D.F.
//
// $TI Release: DSP280x, DSP2801x Header Files V1.41 $
// $Release Date: August 7th, 2006 $
//###########################################################################
#include "DSP280x_Device.h" // DSP280x Headerfile Include File
#include "DSP280x_Examples.h" // DSP280x Examples Include File
// Prototype statements for functions found within this file.
interrupt void adc_isr(void);
// Global variables used in this example:
Uint16 LoopCount;
Uint16 ConversionCount;
Uint16 Voltage1[10];
Uint16 Voltage2[10];
main()
{
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP280x_SysCtrl.c file.
InitSysCtrl();
// For this example, set HSPCLK to SYSCLKOUT / 8 (7.5Mhz assuming 60Mhz SYSCLKOUT)
EALLOW;
SysCtrlRegs.HISPCP.all = 0x4; // HSPCLK = SYSCLKOUT/8
EDIS;
// Step 2. Initialize GPIO:
// This example function is found in the DSP280x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
EALLOW;
GpioCtrlRegs.GPAMUX1.all = 0x0; // GPIO pin
GpioCtrlRegs.GPADIR.all = 0xFF; // Output pin
GpioDataRegs.GPADAT.all =0xFF; // Close LEDs
EDIS;
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP280x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP280x_DefaultIsr.c.
// This function is found in DSP280x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // This is needed to write to EALLOW protected register
PieVectTable.ADCINT = &adc_isr;
EDIS; // This is needed to disable write to EALLOW protected registers
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP280x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
InitAdc(); // For this example, init the ADC
// Step 5. User specific code, enable interrupts:
// Enable ADCINT in PIE
PieCtrlRegs.PIEIER1.bit.INTx6 = 1;
IER |= M_INT1; // Enable CPU Interrupt 1
EINT; // Enable Global interrupt INTM
ERTM; // Enable Global realtime interrupt DBGM
LoopCount = 0;
ConversionCount = 0;
// Configure ADC
AdcRegs.ADCMAXCONV.all = 0x0001; // Setup 2 conv's on SEQ1
AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x3; // Setup ADCINA3 as 1st SEQ1 conv.
AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x2; // Setup ADCINA2 as 2nd SEQ1 conv.
AdcRegs.ADCTRL2.bit.EPWM_SOCA_SEQ1 = 1;// Enable SOCA from ePWM to start SEQ1
AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 1; // Enable SEQ1 interrupt (every EOS)
// Assumes ePWM1 clock is already enabled in InitSysCtrl();
EPwm1Regs.ETSEL.bit.SOCAEN = 1; // Enable SOC on A group
EPwm1Regs.ETSEL.bit.SOCASEL = 4; // Select SOC from from CPMA on upcount
EPwm1Regs.ETPS.bit.SOCAPRD = 1; // Generate pulse on 1st event
EPwm1Regs.CMPA.half.CMPA = 0x0080; // Set compare A value
EPwm1Regs.TBPRD = 0xFFFF; // Set period for ePWM1
EPwm1Regs.TBCTL.bit.CTRMODE = 0; // count up and start
// Wait for ADC interrupt
for(;;)
{
LoopCount++;
}
}
interrupt void adc_isr(void)
{
Voltage1[ConversionCount] = AdcRegs.ADCRESULT0 >>4;
Voltage2[ConversionCount] = AdcRegs.ADCRESULT1 >>4;
// If 40 conversions have been logged, start over
if(ConversionCount == 9)
{
ConversionCount = 0;
}
else ConversionCount++;
// Reinitialize for next ADC sequence
AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1; // Reset SEQ1
AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1; // Clear INT SEQ1 bit
PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; // Acknowledge interrupt to PIE
return;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -