⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 calcjejj.c

📁 nnToolKit 神经网络工具包是基于 MATLAB 神经网络工具箱自行开发的一组神经网络算法函数库
💻 C
📖 第 1 页 / 共 2 页
字号:
/*
 * MATLAB Compiler: 3.0
 * Date: Sun May 13 16:47:40 2007
 * Arguments: "-B" "macro_default" "-O" "all" "-O" "fold_scalar_mxarrays:on"
 * "-O" "fold_non_scalar_mxarrays:on" "-O" "optimize_integer_for_loops:on" "-O"
 * "array_indexing:on" "-O" "optimize_conditionals:on" "-M" "-silentsetup" "-d"
 * "d:/MATLAB6p5/work/nnToolKit/src" "-B" "csglcom:nnToolKit,nnToolKit,2.0"
 * "-B" "sgl" "-m" "-W" "main" "-L" "C" "-t" "-T" "link:exe" "-h"
 * "libmmfile.mlib" "-W" "mainhg" "libmwsglm.mlib" "-t" "-W"
 * "comhg:nnToolKit,nnToolKit,2.0" "-T" "link:lib" "-h" "libmmfile.mlib" "-i"
 * "-i" "D:/MATLAB6p5/work/nnToolKit/lmnet/LmSimu.m"
 * "D:/MATLAB6p5/work/nnToolKit/lmnet/LmTrain.m"
 * "D:/MATLAB6p5/work/nnToolKit/sofm/SofmSimu.m"
 * "D:/MATLAB6p5/work/nnToolKit/sofm/SofmTrain.m" 
 */
#include "calcjejj.h"
#include "calcjx.h"
#include "libmatlbm.h"
#include "libmmfile.h"
static mxArray * _mxarray0_;
static mxArray * _mxarray1_;
static mxArray * _mxarray2_;
static mxArray * _mxarray3_;
static mxArray * _mxarray4_;

void InitializeModule_calcjejj(void) {
    _mxarray0_ = mclInitializeDouble(1.0);
    _mxarray1_ = mclInitializeDouble(2.0);
    _mxarray2_ = mclInitializeDouble(0.0);
    _mxarray3_ = mclInitializeDoubleVector(0, 0, (double *)NULL);
    _mxarray4_ = mclInitializeDouble(6.0);
}

void TerminateModule_calcjejj(void) {
    mxDestroyArray(_mxarray4_);
    mxDestroyArray(_mxarray3_);
    mxDestroyArray(_mxarray2_);
    mxDestroyArray(_mxarray1_);
    mxDestroyArray(_mxarray0_);
}

static mxArray * mlfCalcjejj_batchdiv(mxArray * b,
                                      mxArray * QD,
                                      mxArray * Qstart,
                                      mxArray * Qstop);
static void mlxCalcjejj_batchdiv(int nlhs,
                                 mxArray * plhs[],
                                 int nrhs,
                                 mxArray * prhs[]);
static mxArray * Mcalcjejj(mxArray * * JJ,
                           mxArray * * normJE,
                           int nargout_,
                           mxArray * net,
                           mxArray * Pd,
                           mxArray * Zb,
                           mxArray * Zi,
                           mxArray * Zl,
                           mxArray * N,
                           mxArray * Ac,
                           mxArray * En,
                           mxArray * Q,
                           mxArray * TS,
                           mxArray * MR);
static mxArray * Mcalcjejj_batchdiv(int nargout_,
                                    mxArray * b,
                                    mxArray * QD,
                                    mxArray * Qstart,
                                    mxArray * Qstop);

static mexFunctionTableEntry local_function_table_[1]
  = { { "batchdiv", mlxCalcjejj_batchdiv, 4, 1, NULL } };

_mexLocalFunctionTable _local_function_table_calcjejj
  = { 1, local_function_table_ };

/*
 * The function "mlfCalcjejj" contains the normal interface for the "calcjejj"
 * M-function from file "d:\matlab6p5\toolbox\nnet\nnutils\calcjejj.m" (lines
 * 1-155). This function processes any input arguments and passes them to the
 * implementation version of the function, appearing above.
 */
mxArray * mlfCalcjejj(mxArray * * JJ,
                      mxArray * * normJE,
                      mxArray * net,
                      mxArray * Pd,
                      mxArray * Zb,
                      mxArray * Zi,
                      mxArray * Zl,
                      mxArray * N,
                      mxArray * Ac,
                      mxArray * En,
                      mxArray * Q,
                      mxArray * TS,
                      mxArray * MR) {
    int nargout = 1;
    mxArray * JE = NULL;
    mxArray * JJ__ = NULL;
    mxArray * normJE__ = NULL;
    mlfEnterNewContext(
      2, 11, JJ, normJE, net, Pd, Zb, Zi, Zl, N, Ac, En, Q, TS, MR);
    if (JJ != NULL) {
        ++nargout;
    }
    if (normJE != NULL) {
        ++nargout;
    }
    JE
      = Mcalcjejj(
          &JJ__,
          &normJE__,
          nargout,
          net,
          Pd,
          Zb,
          Zi,
          Zl,
          N,
          Ac,
          En,
          Q,
          TS,
          MR);
    mlfRestorePreviousContext(
      2, 11, JJ, normJE, net, Pd, Zb, Zi, Zl, N, Ac, En, Q, TS, MR);
    if (JJ != NULL) {
        mclCopyOutputArg(JJ, JJ__);
    } else {
        mxDestroyArray(JJ__);
    }
    if (normJE != NULL) {
        mclCopyOutputArg(normJE, normJE__);
    } else {
        mxDestroyArray(normJE__);
    }
    return mlfReturnValue(JE);
}

/*
 * The function "mlxCalcjejj" contains the feval interface for the "calcjejj"
 * M-function from file "d:\matlab6p5\toolbox\nnet\nnutils\calcjejj.m" (lines
 * 1-155). The feval function calls the implementation version of calcjejj
 * through this function. This function processes any input arguments and
 * passes them to the implementation version of the function, appearing above.
 */
void mlxCalcjejj(int nlhs, mxArray * plhs[], int nrhs, mxArray * prhs[]) {
    mxArray * mprhs[11];
    mxArray * mplhs[3];
    int i;
    if (nlhs > 3) {
        mlfError(
          mxCreateString(
            "Run-time Error: File: calcjejj Line: 1 Column:"
            " 1 The function \"calcjejj\" was called with m"
            "ore than the declared number of outputs (3)."),
          NULL);
    }
    if (nrhs > 11) {
        mlfError(
          mxCreateString(
            "Run-time Error: File: calcjejj Line: 1 Column:"
            " 1 The function \"calcjejj\" was called with m"
            "ore than the declared number of inputs (11)."),
          NULL);
    }
    for (i = 0; i < 3; ++i) {
        mplhs[i] = NULL;
    }
    for (i = 0; i < 11 && i < nrhs; ++i) {
        mprhs[i] = prhs[i];
    }
    for (; i < 11; ++i) {
        mprhs[i] = NULL;
    }
    mlfEnterNewContext(
      0,
      11,
      mprhs[0],
      mprhs[1],
      mprhs[2],
      mprhs[3],
      mprhs[4],
      mprhs[5],
      mprhs[6],
      mprhs[7],
      mprhs[8],
      mprhs[9],
      mprhs[10]);
    mplhs[0]
      = Mcalcjejj(
          &mplhs[1],
          &mplhs[2],
          nlhs,
          mprhs[0],
          mprhs[1],
          mprhs[2],
          mprhs[3],
          mprhs[4],
          mprhs[5],
          mprhs[6],
          mprhs[7],
          mprhs[8],
          mprhs[9],
          mprhs[10]);
    mlfRestorePreviousContext(
      0,
      11,
      mprhs[0],
      mprhs[1],
      mprhs[2],
      mprhs[3],
      mprhs[4],
      mprhs[5],
      mprhs[6],
      mprhs[7],
      mprhs[8],
      mprhs[9],
      mprhs[10]);
    plhs[0] = mplhs[0];
    for (i = 1; i < 3 && i < nlhs; ++i) {
        plhs[i] = mplhs[i];
    }
    for (; i < 3; ++i) {
        mxDestroyArray(mplhs[i]);
    }
}

/*
 * The function "mlfCalcjejj_batchdiv" contains the normal interface for the
 * "calcjejj/batchdiv" M-function from file
 * "d:\matlab6p5\toolbox\nnet\nnutils\calcjejj.m" (lines 155-172). This
 * function processes any input arguments and passes them to the implementation
 * version of the function, appearing above.
 */
static mxArray * mlfCalcjejj_batchdiv(mxArray * b,
                                      mxArray * QD,
                                      mxArray * Qstart,
                                      mxArray * Qstop) {
    int nargout = 1;
    mxArray * b_div = NULL;
    mlfEnterNewContext(0, 4, b, QD, Qstart, Qstop);
    b_div = Mcalcjejj_batchdiv(nargout, b, QD, Qstart, Qstop);
    mlfRestorePreviousContext(0, 4, b, QD, Qstart, Qstop);
    return mlfReturnValue(b_div);
}

/*
 * The function "mlxCalcjejj_batchdiv" contains the feval interface for the
 * "calcjejj/batchdiv" M-function from file
 * "d:\matlab6p5\toolbox\nnet\nnutils\calcjejj.m" (lines 155-172). The feval
 * function calls the implementation version of calcjejj/batchdiv through this
 * function. This function processes any input arguments and passes them to the
 * implementation version of the function, appearing above.
 */
static void mlxCalcjejj_batchdiv(int nlhs,
                                 mxArray * plhs[],
                                 int nrhs,
                                 mxArray * prhs[]) {
    mxArray * mprhs[4];
    mxArray * mplhs[1];
    int i;
    if (nlhs > 1) {
        mlfError(
          mxCreateString(
            "Run-time Error: File: calcjejj/batchdiv Line: 155 Col"
            "umn: 1 The function \"calcjejj/batchdiv\" was called "
            "with more than the declared number of outputs (1)."),
          NULL);
    }
    if (nrhs > 4) {
        mlfError(
          mxCreateString(
            "Run-time Error: File: calcjejj/batchdiv Line: 155 Col"
            "umn: 1 The function \"calcjejj/batchdiv\" was called "
            "with more than the declared number of inputs (4)."),
          NULL);
    }
    for (i = 0; i < 1; ++i) {
        mplhs[i] = NULL;
    }
    for (i = 0; i < 4 && i < nrhs; ++i) {
        mprhs[i] = prhs[i];
    }
    for (; i < 4; ++i) {
        mprhs[i] = NULL;
    }
    mlfEnterNewContext(0, 4, mprhs[0], mprhs[1], mprhs[2], mprhs[3]);
    mplhs[0] = Mcalcjejj_batchdiv(nlhs, mprhs[0], mprhs[1], mprhs[2], mprhs[3]);
    mlfRestorePreviousContext(0, 4, mprhs[0], mprhs[1], mprhs[2], mprhs[3]);
    plhs[0] = mplhs[0];
}

/*
 * The function "Mcalcjejj" is the implementation version of the "calcjejj"
 * M-function from file "d:\matlab6p5\toolbox\nnet\nnutils\calcjejj.m" (lines
 * 1-155). It contains the actual compiled code for that M-function. It is a
 * static function and must only be called from one of the interface functions,
 * appearing below.
 */
/*
 * function [JE,JJ,normJE] = calcjejj(net,Pd,Zb,Zi,Zl,N,Ac,En,Q,TS,MR)
 */
static mxArray * Mcalcjejj(mxArray * * JJ,
                           mxArray * * normJE,
                           int nargout_,
                           mxArray * net,
                           mxArray * Pd,
                           mxArray * Zb,
                           mxArray * Zi,
                           mxArray * Zl,
                           mxArray * N,
                           mxArray * Ac,
                           mxArray * En,
                           mxArray * Q,
                           mxArray * TS,
                           mxArray * MR) {
    mexLocalFunctionTable save_local_function_table_
      = mclSetCurrentLocalFunctionTable(&_local_function_table_calcjejj);
    mxArray * JE = NULL;
    mxArray * q = NULL;
    mxArray * Q2 = NULL;
    mxArray * Qstart = NULL;
    mxArray * Qstop = NULL;
    mxArray * Jx = NULL;
    mxArray * Ex = NULL;
    mxArray * Em = NULL;
    mclCopyArray(&net);
    mclCopyArray(&Pd);
    mclCopyArray(&Zb);
    mclCopyArray(&Zi);
    mclCopyArray(&Zl);
    mclCopyArray(&N);
    mclCopyArray(&Ac);
    mclCopyArray(&En);
    mclCopyArray(&Q);
    mclCopyArray(&TS);
    mclCopyArray(&MR);
    /*
     * %CALCJEJJ Calculate Jacobian performance vector.
     * %
     * %  Syntax
     * %
     * %    [je,jj,normje] = calcjejj(net,Pd,BZ,IWZ,LWZ,N,Ac,El,Q,TS,MR)
     * %
     * %  Description
     * %
     * %    This function calculates two values (related to the Jacobian
     * %    of a network) required to calculate the network's Hessian,
     * %    in a memory efficient way.
     * %
     * %    Two values needed to calculate the Hessian of a network are
     * %    J*E (Jacobian times errors) and J'J (Jacobian squared).
     * %    However the Jacobian J can take up a lot of memory.
     * %
     * %    This function calculates J*E and J'J by dividing up training
     * %    vectors into groups, calculating partial Jacobians Ji and
     * %    its associated values Ji*Ei and Ji'Ji, then summing the
     * %    partial values into the full J*E and J'J values.
     * %
     * %    This allows the J*E and J'J values to be calculated with a
     * %    series of smaller Ji matrices, instead of a larger J matrix.
     * %
     * %    [je,jj,normgX] = CALCJEJJ(NET,PD,BZ,IWZ,LWZ,N,Ac,El,Q,TS,MR) takes,
     * %      NET    - Neural network.
     * %      PD     - Delayed inputs.
     * %      BZ     - Concurrent biases.
     * %      IWZ    - Weighted inputs.
     * %      LWZ    - Weighted layer outputs.
     * %      N      - Net inputs.
     * %      Ac     - Combined layer outputs.
     * %      El     - Layer errors.
     * %      Q      - Concurrent size.
     * %      TS     - Time steps.
     * %      MR     - Memory reduction factor.
     * %    and returns,
     * %      je     - Jacobian times errors.
     * %      jj     - Jacobian transposed time the Jacobian.
     * %     normgx - Magnitute of the gradient.
     * %
     * %  Examples
     * %
     * %    Here we create a linear network with a single input element
     * %    ranging from 0 to 1, two neurons, and a tap delay on the
     * %    input with taps at 0, 2, and 4 timesteps.  The network is
     * %    also given a recurrent connection from layer 1 to itself with
     * %    tap delays of [1 2].
     * %
     * %      net = newlin([0 1],2);
     * %      net.layerConnect(1,1) = 1;
     * %      net.layerWeights{1,1}.delays = [1 2];
     * %
     * %    Here is a single (Q = 1) input sequence P with 5 timesteps (TS = 5),
     * %    and the 4 initial input delay conditions Pi, combined inputs Pc,
     * %    and delayed inputs Pd.
     * %
     * %      P = {0 0.1 0.3 0.6 0.4};
     * %      Pi = {0.2 0.3 0.4 0.1};
     * %      Pc = [Pi P];
     * %      Pd = calcpd(net,5,1,Pc);
     * %
     * %    Here the two initial layer delay conditions for each of the
     * %    two neurons, and the layer targets for the two neurons over
     * %    five timesteps are defined.
     * %
     * %      Ai = {[0.5; 0.1] [0.6; 0.5]};
     * %      Tl = {[0.1;0.2] [0.3;0.1], [0.5;0.6] [0.8;0.9], [0.5;0.1]};
     * %
     * %    Here the network's weight and bias values are extracted, and
     * %    the network's performance and other signals are calculated.
     * %
     * %      [perf,El,Ac,N,BZ,IWZ,LWZ] = calcperf(net,X,Pd,Tl,Ai,1,5);
     * %
     * %    Finally we can use CALCGX to calculate the Jacobian times error,
     * %    Jacobian squared, and the norm of the Jocobian times error using
     * %    a memory reduction of 2.
     * %
     * %      [je,jj,normje] = calcjejj(net,Pd,BZ,IWZ,LWZ,N,Ac,El,1,5,2);
     * %
     * %    The results should be the same whatever the memory reduction
     * %    used.  Here a memory reduction of 3 is used.
     * %
     * %      [je,jj,normje] = calcjejj(net,Pd,BZ,IWZ,LWZ,N,Ac,El,1,5,3);
     * %
     * %  See also CALCJX, CALCJEJJ.
     * 
     * % Mark Beale, 11-31-97
     * % Mark Beale, Updated help, 5-25-98
     * % Copyright 1992-2002 The MathWorks, Inc.
     * % $Revision: 1.9 $ $Date: 2002/03/25 16:54:54 $
     * 
     * % Inputs
     * %
     * % Pd - NlxNixTS cell array         PD{i,j,ts}  - DijxQ matrix or []
     * % Zb - Nlx1 cell array             Zb{i}       - SixQ matrix or []
     * % Zi - NlxNixTS cell array         Zi{i,j,ts}  - SixQ matrix or []
     * % Zl - NlxNlxTS cell array         Zl{i,j,ts}  - SixQ matrix or []
     * % N  - NlxTS cell array            N{i}        - SixQ matrix
     * % Ac - Nlx(LD+TS) cell array       Ac{i,LD+ts} - SixQ matrix
     * % En - NlxTS cell array            E{i,ts}     - SixQ matrix or []
     * %
     * % Locals

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -