📄 learnis.c
字号:
/*
* MATLAB Compiler: 3.0
* Date: Sun May 13 16:47:41 2007
* Arguments: "-B" "macro_default" "-O" "all" "-O" "fold_scalar_mxarrays:on"
* "-O" "fold_non_scalar_mxarrays:on" "-O" "optimize_integer_for_loops:on" "-O"
* "array_indexing:on" "-O" "optimize_conditionals:on" "-M" "-silentsetup" "-d"
* "d:/MATLAB6p5/work/nnToolKit/src" "-B" "csglcom:nnToolKit,nnToolKit,2.0"
* "-B" "sgl" "-m" "-W" "main" "-L" "C" "-t" "-T" "link:exe" "-h"
* "libmmfile.mlib" "-W" "mainhg" "libmwsglm.mlib" "-t" "-W"
* "comhg:nnToolKit,nnToolKit,2.0" "-T" "link:lib" "-h" "libmmfile.mlib" "-i"
* "-i" "D:/MATLAB6p5/work/nnToolKit/lmnet/LmSimu.m"
* "D:/MATLAB6p5/work/nnToolKit/lmnet/LmTrain.m"
* "D:/MATLAB6p5/work/nnToolKit/sofm/SofmSimu.m"
* "D:/MATLAB6p5/work/nnToolKit/sofm/SofmTrain.m"
*/
#include "learnis.h"
#include "libmatlbm.h"
#include "nntobsu.h"
static mxChar _array1_[7] = { 'l', 'e', 'a', 'r', 'n', 'i', 's' };
static mxArray * _mxarray0_;
static mxChar _array3_[42] = { 'S', 'e', 'e', ' ', 'h', 'e', 'l', 'p', ' ',
'o', 'n', ' ', 'L', 'E', 'A', 'R', 'N', 'I',
'S', ' ', 'f', 'o', 'r', ' ', 'n', 'e', 'w',
' ', 'a', 'r', 'g', 'u', 'm', 'e', 'n', 't',
' ', 'l', 'i', 's', 't', '.' };
static mxArray * _mxarray2_;
static mxArray * _mxarray4_;
static mxChar _array6_[6] = { 'p', 'n', 'a', 'm', 'e', 's' };
static mxArray * _mxarray5_;
static mxChar _array9_[2] = { 'l', 'r' };
static mxArray * _mxarray8_;
static mxArray * _mxarray7_;
static mxChar _array11_[9] = { 'p', 'd', 'e', 'f', 'a', 'u', 'l', 't', 's' };
static mxArray * _mxarray10_;
static mxArray * _mxarray12_;
static mxChar _array14_[5] = { 'n', 'e', 'e', 'd', 'g' };
static mxArray * _mxarray13_;
static mxArray * _mxarray15_;
static mxChar _array17_[22] = { 'U', 'n', 'r', 'e', 'c', 'o', 'g', 'n',
'i', 'z', 'e', 'd', ' ', 'p', 'r', 'o',
'p', 'e', 'r', 't', 'y', '.' };
static mxArray * _mxarray16_;
static mxArray * _mxarray18_;
static mxArray * _mxarray19_;
void InitializeModule_learnis(void) {
_mxarray0_ = mclInitializeString(7, _array1_);
_mxarray2_ = mclInitializeString(42, _array3_);
_mxarray4_ = mclInitializeDoubleVector(0, 0, (double *)NULL);
_mxarray5_ = mclInitializeString(6, _array6_);
_mxarray8_ = mclInitializeString(2, _array9_);
_mxarray7_ = mclInitializeCell(_mxarray8_);
_mxarray10_ = mclInitializeString(9, _array11_);
_mxarray12_ = mclInitializeDouble(.5);
_mxarray13_ = mclInitializeString(5, _array14_);
_mxarray15_ = mclInitializeDouble(0.0);
_mxarray16_ = mclInitializeString(22, _array17_);
_mxarray18_ = mclInitializeDouble(2.0);
_mxarray19_ = mclInitializeDouble(1.0);
}
void TerminateModule_learnis(void) {
mxDestroyArray(_mxarray19_);
mxDestroyArray(_mxarray18_);
mxDestroyArray(_mxarray16_);
mxDestroyArray(_mxarray15_);
mxDestroyArray(_mxarray13_);
mxDestroyArray(_mxarray12_);
mxDestroyArray(_mxarray10_);
mxDestroyArray(_mxarray7_);
mxDestroyArray(_mxarray8_);
mxDestroyArray(_mxarray5_);
mxDestroyArray(_mxarray4_);
mxDestroyArray(_mxarray2_);
mxDestroyArray(_mxarray0_);
}
static mxArray * Mlearnis(mxArray * * ls,
int nargout_,
mxArray * w,
mxArray * p,
mxArray * z,
mxArray * n,
mxArray * a,
mxArray * t,
mxArray * e,
mxArray * gW,
mxArray * gA,
mxArray * d,
mxArray * lp,
mxArray * ls_in);
_mexLocalFunctionTable _local_function_table_learnis
= { 0, (mexFunctionTableEntry *)NULL };
/*
* The function "mlfLearnis" contains the normal interface for the "learnis"
* M-function from file "d:\matlab6p5\toolbox\nnet\nnet\learnis.m" (lines
* 1-124). This function processes any input arguments and passes them to the
* implementation version of the function, appearing above.
*/
mxArray * mlfLearnis(mxArray * * ls,
mxArray * w,
mxArray * p,
mxArray * z,
mxArray * n,
mxArray * a,
mxArray * t,
mxArray * e,
mxArray * gW,
mxArray * gA,
mxArray * d,
mxArray * lp,
mxArray * ls_in) {
int nargout = 1;
mxArray * dw = NULL;
mxArray * ls__ = NULL;
mlfEnterNewContext(1, 12, ls, w, p, z, n, a, t, e, gW, gA, d, lp, ls_in);
if (ls != NULL) {
++nargout;
}
dw = Mlearnis(&ls__, nargout, w, p, z, n, a, t, e, gW, gA, d, lp, ls_in);
mlfRestorePreviousContext(
1, 12, ls, w, p, z, n, a, t, e, gW, gA, d, lp, ls_in);
if (ls != NULL) {
mclCopyOutputArg(ls, ls__);
} else {
mxDestroyArray(ls__);
}
return mlfReturnValue(dw);
}
/*
* The function "mlxLearnis" contains the feval interface for the "learnis"
* M-function from file "d:\matlab6p5\toolbox\nnet\nnet\learnis.m" (lines
* 1-124). The feval function calls the implementation version of learnis
* through this function. This function processes any input arguments and
* passes them to the implementation version of the function, appearing above.
*/
void mlxLearnis(int nlhs, mxArray * plhs[], int nrhs, mxArray * prhs[]) {
mxArray * mprhs[12];
mxArray * mplhs[2];
int i;
if (nlhs > 2) {
mlfError(
mxCreateString(
"Run-time Error: File: learnis Line: 1 Column: "
"1 The function \"learnis\" was called with mor"
"e than the declared number of outputs (2)."),
NULL);
}
if (nrhs > 12) {
mlfError(
mxCreateString(
"Run-time Error: File: learnis Line: 1 Column: "
"1 The function \"learnis\" was called with mor"
"e than the declared number of inputs (12)."),
NULL);
}
for (i = 0; i < 2; ++i) {
mplhs[i] = NULL;
}
for (i = 0; i < 12 && i < nrhs; ++i) {
mprhs[i] = prhs[i];
}
for (; i < 12; ++i) {
mprhs[i] = NULL;
}
mlfEnterNewContext(
0,
12,
mprhs[0],
mprhs[1],
mprhs[2],
mprhs[3],
mprhs[4],
mprhs[5],
mprhs[6],
mprhs[7],
mprhs[8],
mprhs[9],
mprhs[10],
mprhs[11]);
mplhs[0]
= Mlearnis(
&mplhs[1],
nlhs,
mprhs[0],
mprhs[1],
mprhs[2],
mprhs[3],
mprhs[4],
mprhs[5],
mprhs[6],
mprhs[7],
mprhs[8],
mprhs[9],
mprhs[10],
mprhs[11]);
mlfRestorePreviousContext(
0,
12,
mprhs[0],
mprhs[1],
mprhs[2],
mprhs[3],
mprhs[4],
mprhs[5],
mprhs[6],
mprhs[7],
mprhs[8],
mprhs[9],
mprhs[10],
mprhs[11]);
plhs[0] = mplhs[0];
for (i = 1; i < 2 && i < nlhs; ++i) {
plhs[i] = mplhs[i];
}
for (; i < 2; ++i) {
mxDestroyArray(mplhs[i]);
}
}
/*
* The function "Mlearnis" is the implementation version of the "learnis"
* M-function from file "d:\matlab6p5\toolbox\nnet\nnet\learnis.m" (lines
* 1-124). It contains the actual compiled code for that M-function. It is a
* static function and must only be called from one of the interface functions,
* appearing below.
*/
/*
* function [dw,ls] = learnis(w,p,z,n,a,t,e,gW,gA,d,lp,ls)
*/
static mxArray * Mlearnis(mxArray * * ls,
int nargout_,
mxArray * w,
mxArray * p,
mxArray * z,
mxArray * n,
mxArray * a,
mxArray * t,
mxArray * e,
mxArray * gW,
mxArray * gA,
mxArray * d,
mxArray * lp,
mxArray * ls_in) {
mexLocalFunctionTable save_local_function_table_
= mclSetCurrentLocalFunctionTable(&_local_function_table_learnis);
int nargin_
= mclNargin(12, w, p, z, n, a, t, e, gW, gA, d, lp, ls_in, NULL);
mxArray * dw = NULL;
mxArray * q = NULL;
mxArray * lr_a = NULL;
mxArray * pt = NULL;
mxArray * Q = NULL;
mxArray * R = NULL;
mxArray * S = NULL;
mxArray * ans = NULL;
mclCopyArray(&w);
mclCopyArray(&p);
mclCopyArray(&z);
mclCopyArray(&n);
mclCopyArray(&a);
mclCopyArray(&t);
mclCopyArray(&e);
mclCopyArray(&gW);
mclCopyArray(&gA);
mclCopyArray(&d);
mclCopyArray(&lp);
mclCopyInputArg(ls, ls_in);
/*
* %LEARNIS Instar weight learning function.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -