📄 sofmtrain.c
字号:
/*
* MATLAB Compiler: 3.0
* Date: Sun May 13 16:47:40 2007
* Arguments: "-B" "macro_default" "-O" "all" "-O" "fold_scalar_mxarrays:on"
* "-O" "fold_non_scalar_mxarrays:on" "-O" "optimize_integer_for_loops:on" "-O"
* "array_indexing:on" "-O" "optimize_conditionals:on" "-M" "-silentsetup" "-d"
* "d:/MATLAB6p5/work/nnToolKit/src" "-B" "csglcom:nnToolKit,nnToolKit,2.0"
* "-B" "sgl" "-m" "-W" "main" "-L" "C" "-t" "-T" "link:exe" "-h"
* "libmmfile.mlib" "-W" "mainhg" "libmwsglm.mlib" "-t" "-W"
* "comhg:nnToolKit,nnToolKit,2.0" "-T" "link:lib" "-h" "libmmfile.mlib" "-i"
* "-i" "D:/MATLAB6p5/work/nnToolKit/lmnet/LmSimu.m"
* "D:/MATLAB6p5/work/nnToolKit/lmnet/LmTrain.m"
* "D:/MATLAB6p5/work/nnToolKit/sofm/SofmSimu.m"
* "D:/MATLAB6p5/work/nnToolKit/sofm/SofmTrain.m"
*/
#include "sofmtrain.h"
#include "initsm.h"
#include "libmatlbm.h"
#include "libmmfile.h"
#include "libmwsglm.h"
#include "nbgrid.h"
#include "nntwarn.h"
#include "trainsm.h"
static mxChar _array1_[3] = { 'O', 'F', 'F' };
static mxArray * _mxarray0_;
static mxArray * _mxarray2_;
static mxChar _array4_[14] = { 'i', 'n', 'p', 'u', 't', '_', 'p',
'a', 'r', 'a', '%', 's', '%', 's' };
static mxArray * _mxarray3_;
static mxChar _array6_[4] = { '.', 't', 'x', 't' };
static mxArray * _mxarray5_;
static mxChar _array8_[1] = { 'r' };
static mxArray * _mxarray7_;
static mxChar _array10_[2] = { '%', 'f' };
static mxArray * _mxarray9_;
static mxChar _array12_[5] = { 'w', '%', 's', '%', 's' };
static mxArray * _mxarray11_;
static mxChar _array14_[4] = { '.', 'd', 'a', 't' };
static mxArray * _mxarray13_;
static mxChar _array16_[1] = { 'w' };
static mxArray * _mxarray15_;
static mxChar _array18_[6] = { '%', '9', '.', '4', 'f', ' ' };
static mxArray * _mxarray17_;
static mxArray * _mxarray19_;
static mxChar _array21_[3] = { 'a', 'l', 'l' };
static mxArray * _mxarray20_;
void InitializeModule_sofmtrain(void) {
_mxarray0_ = mclInitializeString(3, _array1_);
_mxarray2_ = mclInitializeDouble(-1.0);
_mxarray3_ = mclInitializeString(14, _array4_);
_mxarray5_ = mclInitializeString(4, _array6_);
_mxarray7_ = mclInitializeString(1, _array8_);
_mxarray9_ = mclInitializeString(2, _array10_);
_mxarray11_ = mclInitializeString(5, _array12_);
_mxarray13_ = mclInitializeString(4, _array14_);
_mxarray15_ = mclInitializeString(1, _array16_);
_mxarray17_ = mclInitializeString(6, _array18_);
_mxarray19_ = mclInitializeDouble(1.0);
_mxarray20_ = mclInitializeString(3, _array21_);
}
void TerminateModule_sofmtrain(void) {
mxDestroyArray(_mxarray20_);
mxDestroyArray(_mxarray19_);
mxDestroyArray(_mxarray17_);
mxDestroyArray(_mxarray15_);
mxDestroyArray(_mxarray13_);
mxDestroyArray(_mxarray11_);
mxDestroyArray(_mxarray9_);
mxDestroyArray(_mxarray7_);
mxDestroyArray(_mxarray5_);
mxDestroyArray(_mxarray3_);
mxDestroyArray(_mxarray2_);
mxDestroyArray(_mxarray0_);
}
static mxArray * Msofmtrain(int nargout_,
mxArray * ModelNo,
mxArray * NetPara,
mxArray * TrainPara,
mxArray * DataDir);
_mexLocalFunctionTable _local_function_table_sofmtrain
= { 0, (mexFunctionTableEntry *)NULL };
/*
* The function "mlfSofmtrain" contains the normal interface for the
* "sofmtrain" M-function from file
* "d:\matlab6p5\work\nntoolkit\sofm\sofmtrain.m" (lines 1-56). This function
* processes any input arguments and passes them to the implementation version
* of the function, appearing above.
*/
mxArray * mlfSofmtrain(mxArray * ModelNo,
mxArray * NetPara,
mxArray * TrainPara,
mxArray * DataDir) {
int nargout = 1;
mxArray * retstr = NULL;
mlfEnterNewContext(0, 4, ModelNo, NetPara, TrainPara, DataDir);
retstr = Msofmtrain(nargout, ModelNo, NetPara, TrainPara, DataDir);
mlfRestorePreviousContext(0, 4, ModelNo, NetPara, TrainPara, DataDir);
return mlfReturnValue(retstr);
}
/*
* The function "mlxSofmtrain" contains the feval interface for the "sofmtrain"
* M-function from file "d:\matlab6p5\work\nntoolkit\sofm\sofmtrain.m" (lines
* 1-56). The feval function calls the implementation version of sofmtrain
* through this function. This function processes any input arguments and
* passes them to the implementation version of the function, appearing above.
*/
void mlxSofmtrain(int nlhs, mxArray * plhs[], int nrhs, mxArray * prhs[]) {
mxArray * mprhs[4];
mxArray * mplhs[1];
int i;
if (nlhs > 1) {
mlfError(
mxCreateString(
"Run-time Error: File: sofmtrain Line: 4 Column:"
" 1 The function \"sofmtrain\" was called with m"
"ore than the declared number of outputs (1)."),
NULL);
}
if (nrhs > 4) {
mlfError(
mxCreateString(
"Run-time Error: File: sofmtrain Line: 4 Column:"
" 1 The function \"sofmtrain\" was called with m"
"ore than the declared number of inputs (4)."),
NULL);
}
for (i = 0; i < 1; ++i) {
mplhs[i] = NULL;
}
for (i = 0; i < 4 && i < nrhs; ++i) {
mprhs[i] = prhs[i];
}
for (; i < 4; ++i) {
mprhs[i] = NULL;
}
mlfEnterNewContext(0, 4, mprhs[0], mprhs[1], mprhs[2], mprhs[3]);
mplhs[0] = Msofmtrain(nlhs, mprhs[0], mprhs[1], mprhs[2], mprhs[3]);
mlfRestorePreviousContext(0, 4, mprhs[0], mprhs[1], mprhs[2], mprhs[3]);
plhs[0] = mplhs[0];
}
/*
* The function "Msofmtrain" is the implementation version of the "sofmtrain"
* M-function from file "d:\matlab6p5\work\nntoolkit\sofm\sofmtrain.m" (lines
* 1-56). It contains the actual compiled code for that M-function. It is a
* static function and must only be called from one of the interface functions,
* appearing below.
*/
/*
* %此为Sofm网络训练程序
* %自组织特征映射模型(Self-Organizing feature Map),认为一个神经网络接受外界输入模式时,将会分为不同的区域,各区域对输入模式具有不同的响应特征,同时这一过程是自动完成的。各神经元的连接权值具有一定的分布。最邻近的神经元互相刺激,而较远的神经元则相互抑制,更远一些的则具有较弱的刺激作用。自组织特征映射法是一种无教师的聚类方法。
* %完成分类训练,并保存权值和分类后各类别下的像素矩阵
* function retstr = SofmTrain(ModelNo,NetPara,TrainPara,DataDir)
*/
static mxArray * Msofmtrain(int nargout_,
mxArray * ModelNo,
mxArray * NetPara,
mxArray * TrainPara,
mxArray * DataDir) {
mexLocalFunctionTable save_local_function_table_
= mclSetCurrentLocalFunctionTable(&_local_function_table_sofmtrain);
mxArray * retstr = NULL;
mxArray * fww = NULL;
mxArray * m = NULL;
mxArray * tp = NULL;
mxArray * lr = NULL;
mxArray * me = NULL;
mxArray * df = NULL;
mxArray * w = NULL;
mxArray * count = NULL;
mxArray * x = NULL;
mxArray * frin_para = NULL;
mxArray * DataNum = NULL;
mxArray * ClassifyNum = NULL;
mxArray * InputDim = NULL;
mxArray * olddir = NULL;
mxArray * ans = NULL;
mclCopyArray(&ModelNo);
mclCopyArray(&NetPara);
mclCopyArray(&TrainPara);
mclCopyArray(&DataDir);
/*
* NNTWARN OFF
*/
mlfNntwarn(_mxarray0_);
/*
* retstr=-1;
*/
mlfAssign(&retstr, _mxarray2_);
/*
* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
* %ModelNo='1';
* % 网络参数
* %NetPara(1)=1; %输入层节点数
* %NetPara(2)=5; %分类数
* %NetPara(3)=65536; %训练数据组数
*
* %TrainPara(1)=50; % 训练过程每df步显示1次数
* %TrainPara(2)=3000; % 最多训练步数
* %TrainPara(3)=0.02; % 学习率
*
* %DataDir='.';
* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
* %保留原目录
* olddir=pwd;
*/
mlfAssign(&olddir, mlfPwd());
/*
* %进入数据所在目录
* cd(DataDir);
*/
mclAssignAns(&ans, mlfNCd(0, mclVa(DataDir, "DataDir")));
/*
*
* % 网络参数
* InputDim=NetPara(1); %输入层节点数
*/
mlfAssign(&InputDim, mclIntArrayRef1(mclVa(NetPara, "NetPara"), 1));
/*
* ClassifyNum=NetPara(2); %分类数
*/
mlfAssign(&ClassifyNum, mclIntArrayRef1(mclVa(NetPara, "NetPara"), 2));
/*
* DataNum=NetPara(3); %训练数据组数
*/
mlfAssign(&DataNum, mclIntArrayRef1(mclVa(NetPara, "NetPara"), 3));
/*
*
* frin_para=fopen(sprintf('input_para%s%s',ModelNo,'.txt'),'r'); %输入数据文件
*/
mlfAssign(
&frin_para,
mlfFopen(
NULL,
NULL,
mlfSprintf(
NULL, _mxarray3_, mclVa(ModelNo, "ModelNo"), _mxarray5_, NULL),
_mxarray7_,
NULL));
/*
* [x,count]=fscanf(frin_para,'%f',[InputDim,DataNum]); %取输入数据
*/
mlfAssign(
&x,
mlfFscanf(
&count,
mclVv(frin_para, "frin_para"),
_mxarray9_,
mlfHorzcat(
mclVv(InputDim, "InputDim"), mclVv(DataNum, "DataNum"), NULL)));
/*
* fclose(frin_para);
*/
mclAssignAns(&ans, mlfFclose(mclVv(frin_para, "frin_para")));
/*
*
* % 对前向网络进行初始化
* w=initsm(x,ClassifyNum);
*/
mlfAssign(&w, mlfInitsm(mclVv(x, "x"), mclVv(ClassifyNum, "ClassifyNum")));
/*
* % 训练过程每df步显示1次数
* df=TrainPara(1);
*/
mlfAssign(&df, mclIntArrayRef1(mclVa(TrainPara, "TrainPara"), 1));
/*
* % 最多训练步数
* me=TrainPara(2)
*/
mlfAssign(&me, mclIntArrayRef1(mclVa(TrainPara, "TrainPara"), 2));
mclPrintArray(mclVv(me, "me"), "me");
/*
* % 学习率
* lr=TrainPara(3);
*/
mlfAssign(&lr, mclIntArrayRef1(mclVa(TrainPara, "TrainPara"), 3));
/*
*
* % 神经网络训练参数
* tp=[df me lr];
*/
mlfAssign(
&tp, mlfHorzcat(mclVv(df, "df"), mclVv(me, "me"), mclVv(lr, "lr"), NULL));
/*
* m=nbgrid(ClassifyNum);
*/
mlfAssign(
&m, mlfNbgrid(mclVv(ClassifyNum, "ClassifyNum"), NULL, NULL, NULL, NULL));
/*
* % 训练竞争层
* w=trainsm(w,m,x,tp);
*/
mlfAssign(
&w,
mlfTrainsm(mclVv(w, "w"), mclVv(m, "m"), mclVv(x, "x"), mclVv(tp, "tp")));
/*
* % 将训练结果权值写入文件
* fww=fopen(sprintf('w%s%s',ModelNo,'.dat'),'w');
*/
mlfAssign(
&fww,
mlfFopen(
NULL,
NULL,
mlfSprintf(
NULL, _mxarray11_, mclVa(ModelNo, "ModelNo"), _mxarray13_, NULL),
_mxarray15_,
NULL));
/*
* fprintf(fww,'%9.4f ',w);
*/
mclAssignAns(
&ans,
mlfNFprintf(0, mclVv(fww, "fww"), _mxarray17_, mclVv(w, "w"), NULL));
/*
* fclose(fww);
*/
mclAssignAns(&ans, mlfFclose(mclVv(fww, "fww")));
/*
*
* cd(olddir);
*/
mclAssignAns(&ans, mlfNCd(0, mclVv(olddir, "olddir")));
/*
*
* retstr=1;
*/
mlfAssign(&retstr, _mxarray19_);
/*
* close all;
*/
mclAssignAns(&ans, mlfNClose(0, _mxarray20_, NULL));
mclValidateOutput(retstr, 1, nargout_, "retstr", "sofmtrain");
mxDestroyArray(ans);
mxDestroyArray(olddir);
mxDestroyArray(InputDim);
mxDestroyArray(ClassifyNum);
mxDestroyArray(DataNum);
mxDestroyArray(frin_para);
mxDestroyArray(x);
mxDestroyArray(count);
mxDestroyArray(w);
mxDestroyArray(df);
mxDestroyArray(me);
mxDestroyArray(lr);
mxDestroyArray(tp);
mxDestroyArray(m);
mxDestroyArray(fww);
mxDestroyArray(DataDir);
mxDestroyArray(TrainPara);
mxDestroyArray(NetPara);
mxDestroyArray(ModelNo);
mclSetCurrentLocalFunctionTable(save_local_function_table_);
return retstr;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -