📄 trainsm.c
字号:
/*
* MATLAB Compiler: 3.0
* Date: Sun May 13 16:47:40 2007
* Arguments: "-B" "macro_default" "-O" "all" "-O" "fold_scalar_mxarrays:on"
* "-O" "fold_non_scalar_mxarrays:on" "-O" "optimize_integer_for_loops:on" "-O"
* "array_indexing:on" "-O" "optimize_conditionals:on" "-M" "-silentsetup" "-d"
* "d:/MATLAB6p5/work/nnToolKit/src" "-B" "csglcom:nnToolKit,nnToolKit,2.0"
* "-B" "sgl" "-m" "-W" "main" "-L" "C" "-t" "-T" "link:exe" "-h"
* "libmmfile.mlib" "-W" "mainhg" "libmwsglm.mlib" "-t" "-W"
* "comhg:nnToolKit,nnToolKit,2.0" "-T" "link:lib" "-h" "libmmfile.mlib" "-i"
* "-i" "D:/MATLAB6p5/work/nnToolKit/lmnet/LmSimu.m"
* "D:/MATLAB6p5/work/nnToolKit/lmnet/LmTrain.m"
* "D:/MATLAB6p5/work/nnToolKit/sofm/SofmSimu.m"
* "D:/MATLAB6p5/work/nnToolKit/sofm/SofmTrain.m"
*/
#include "trainsm.h"
#include "mwservices.h"
#include "learnis.h"
#include "libmatlbm.h"
#include "nndef.h"
#include "nntobsf.h"
#include "plotsm.h"
#include "simusm.h"
static mxChar _array1_[7] = { 't', 'r', 'a', 'i', 'n', 's', 'm' };
static mxArray * _mxarray0_;
static mxChar _array3_[55] = { 'U', 's', 'e', ' ', 'N', 'N', 'T', '2', 'S', 'O',
'M', ' ', 'a', 'n', 'd', ' ', 'T', 'R', 'A', 'I',
'N', ' ', 't', 'o', ' ', 'u', 'p', 'd', 'a', 't',
'e', ' ', 'a', 'n', 'd', ' ', 't', 'r', 'a', 'i',
'n', ' ', 'y', 'o', 'u', 'r', ' ', 'n', 'e', 't',
'w', 'o', 'r', 'k', '.' };
static mxArray * _mxarray2_;
static mxChar _array5_[21] = { 'N', 'o', 't', ' ', 'e', 'n', 'o',
'u', 'g', 'h', ' ', 'a', 'r', 'g',
'u', 'm', 'e', 'n', 't', 's', '.' };
static mxArray * _mxarray4_;
static mxArray * _mxarray6_;
static double _array8_[3] = { 25.0, 100.0, 1.0 };
static mxArray * _mxarray7_;
static mxChar _array10_[55] = { 'T', 'R', 'A', 'I', 'N', 'S', 'M', ':',
' ', '%', '%', 'g', '/', '%', 'g', ' ',
'e', 'p', 'o', 'c', 'h', 's', ',', ' ',
'n', 'e', 'i', 'g', 'h', 'b', 'o', 'r',
'h', 'o', 'o', 'd', ' ', '=', ' ', '%',
'%', 'g', ',', ' ', 'l', 'r', ' ', '=',
' ', '%', '%', 'g', '.', 0x005c, 'n' };
static mxArray * _mxarray9_;
static mxArray * _mxarray11_;
static mxArray * _mxarray12_;
static mxArray * _mxarray13_;
static mxArray * _mxarray14_;
static mxArray * _mxarray15_;
void InitializeModule_trainsm(void) {
_mxarray0_ = mclInitializeString(7, _array1_);
_mxarray2_ = mclInitializeString(55, _array3_);
_mxarray4_ = mclInitializeString(21, _array5_);
_mxarray6_ = mclInitializeDoubleVector(0, 0, (double *)NULL);
_mxarray7_ = mclInitializeDoubleVector(1, 3, _array8_);
_mxarray9_ = mclInitializeString(55, _array10_);
_mxarray11_ = mclInitializeDouble(0.0);
_mxarray12_ = mclInitializeDouble(100.0);
_mxarray13_ = mclInitializeDouble(1.0);
_mxarray14_ = mclInitializeDouble(1000.0);
_mxarray15_ = mclInitializeDouble(10.0);
}
void TerminateModule_trainsm(void) {
mxDestroyArray(_mxarray15_);
mxDestroyArray(_mxarray14_);
mxDestroyArray(_mxarray13_);
mxDestroyArray(_mxarray12_);
mxDestroyArray(_mxarray11_);
mxDestroyArray(_mxarray9_);
mxDestroyArray(_mxarray7_);
mxDestroyArray(_mxarray6_);
mxDestroyArray(_mxarray4_);
mxDestroyArray(_mxarray2_);
mxDestroyArray(_mxarray0_);
}
static mxArray * Mtrainsm(int nargout_,
mxArray * w_in,
mxArray * m,
mxArray * p,
mxArray * tp);
_mexLocalFunctionTable _local_function_table_trainsm
= { 0, (mexFunctionTableEntry *)NULL };
/*
* The function "mlfTrainsm" contains the normal interface for the "trainsm"
* M-function from file "d:\matlab6p5\toolbox\nnet\nnobsolete\trainsm.m" (lines
* 1-78). This function processes any input arguments and passes them to the
* implementation version of the function, appearing above.
*/
mxArray * mlfTrainsm(mxArray * w_in, mxArray * m, mxArray * p, mxArray * tp) {
int nargout = 1;
mxArray * w = NULL;
mlfEnterNewContext(0, 4, w_in, m, p, tp);
w = Mtrainsm(nargout, w_in, m, p, tp);
mlfRestorePreviousContext(0, 4, w_in, m, p, tp);
return mlfReturnValue(w);
}
/*
* The function "mlxTrainsm" contains the feval interface for the "trainsm"
* M-function from file "d:\matlab6p5\toolbox\nnet\nnobsolete\trainsm.m" (lines
* 1-78). The feval function calls the implementation version of trainsm
* through this function. This function processes any input arguments and
* passes them to the implementation version of the function, appearing above.
*/
void mlxTrainsm(int nlhs, mxArray * plhs[], int nrhs, mxArray * prhs[]) {
mxArray * mprhs[4];
mxArray * mplhs[1];
int i;
if (nlhs > 1) {
mlfError(
mxCreateString(
"Run-time Error: File: trainsm Line: 1 Column: "
"1 The function \"trainsm\" was called with mor"
"e than the declared number of outputs (1)."),
NULL);
}
if (nrhs > 4) {
mlfError(
mxCreateString(
"Run-time Error: File: trainsm Line: 1 Column:"
" 1 The function \"trainsm\" was called with m"
"ore than the declared number of inputs (4)."),
NULL);
}
for (i = 0; i < 1; ++i) {
mplhs[i] = NULL;
}
for (i = 0; i < 4 && i < nrhs; ++i) {
mprhs[i] = prhs[i];
}
for (; i < 4; ++i) {
mprhs[i] = NULL;
}
mlfEnterNewContext(0, 4, mprhs[0], mprhs[1], mprhs[2], mprhs[3]);
mplhs[0] = Mtrainsm(nlhs, mprhs[0], mprhs[1], mprhs[2], mprhs[3]);
mlfRestorePreviousContext(0, 4, mprhs[0], mprhs[1], mprhs[2], mprhs[3]);
plhs[0] = mplhs[0];
}
/*
* The function "Mtrainsm" is the implementation version of the "trainsm"
* M-function from file "d:\matlab6p5\toolbox\nnet\nnobsolete\trainsm.m" (lines
* 1-78). It contains the actual compiled code for that M-function. It is a
* static function and must only be called from one of the interface functions,
* appearing below.
*/
/*
* function w = trainsm(w,m,p,tp)
*/
static mxArray * Mtrainsm(int nargout_,
mxArray * w_in,
mxArray * m,
mxArray * p,
mxArray * tp) {
mexLocalFunctionTable save_local_function_table_
= mclSetCurrentLocalFunctionTable(&_local_function_table_trainsm);
int nargin_ = mclNargin(4, w_in, m, p, tp, NULL);
mxArray * w = NULL;
mxArray * dw = NULL;
mxArray * a = NULL;
mxArray * P = NULL;
mxArray * j = NULL;
mxArray * lr = NULL;
mxArray * nb = NULL;
mxArray * i = NULL;
mxArray * z = NULL;
mxArray * nb_x = NULL;
mxArray * base_lr = NULL;
mxArray * lr_x = NULL;
mxArray * message = NULL;
mxArray * S = NULL;
mxArray * Q = NULL;
mxArray * R = NULL;
mxArray * max_nb = NULL;
mxArray * init_lr = NULL;
mxArray * max_pres = NULL;
mxArray * df = NULL;
mxArray * ans = NULL;
mclCopyInputArg(&w, w_in);
mclCopyArray(&m);
mclCopyArray(&p);
mclCopyArray(&tp);
/*
* %TRAINSM Train self-organizing map with Kohonen rule.
* %
* % This function is obselete.
* % Use NNT2SOM and TRAIN to update and train your network.
*
* nntobsf('trainsm','Use NNT2SOM and TRAIN to update and train your network.')
*/
mlfNntobsf(_mxarray0_, _mxarray2_, NULL);
/*
*
* % TRAINSM(W,M,P,TP)
* % W - SxR weight matrix.
* % M - Neighborhood matrix.
* % P - RxQ matrix of input vectors.
* % TP - Training parameters (optional).
* % Returns new weights.
* %
* % Training parameters are:
* % TP(1) - Presentations between updating display, default = 25.
* % TP(2) - Number of presentations, default = 100.
* % TP(3) - Initial learning rate, default = 1.
* % Missing parameters and NaN's are replaced with defaults.
*
* % Mark Beale, 12-15-93
* % Copyright 1992-2002 The MathWorks, Inc.
* % $Revision: 1.12 $ $Date: 2002/03/25 16:54:31 $
*
* if nargin < 3, error('Not enough arguments.'); end
*/
if (nargin_ < 3) {
mlfError(_mxarray4_, NULL);
}
/*
*
* % TRAINING PARAMETERS
* if nargin == 3, tp = []; end
*/
if (nargin_ == 3) {
mlfAssign(&tp, _mxarray6_);
}
/*
* tp = nndef(tp,[25 100 1]);
*/
mlfAssign(&tp, mlfNndef(mclVa(tp, "tp"), _mxarray7_));
/*
* df = tp(1);
*/
mlfAssign(&df, mclIntArrayRef1(mclVa(tp, "tp"), 1));
/*
* max_pres = tp(2);
*/
mlfAssign(&max_pres, mclIntArrayRef1(mclVa(tp, "tp"), 2));
/*
* init_lr = tp(3);
*/
mlfAssign(&init_lr, mclIntArrayRef1(mclVa(tp, "tp"), 3));
/*
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -