📄 bandlimited.c
字号:
p_filter->output.i_rate - p_sys->i_remainder, p_filter->output.i_rate, p_filter->input.i_rate, 1, i_nb_channels ); } p_out += i_nb_channels; i_out++; p_sys->i_remainder += p_filter->input.i_rate; } p_in += i_nb_channels; p_sys->i_remainder -= p_filter->output.i_rate; } /* Apply the new rate for the rest of the samples */ if( i_in < i_in_nb - i_filter_wing ) { p_sys->i_old_rate = p_filter->input.i_rate; p_sys->d_old_factor = d_factor; p_sys->i_old_wing = i_filter_wing; } for( ; i_in < i_in_nb - i_filter_wing; i_in++ ) { while( p_sys->i_remainder < p_filter->output.i_rate ) { if( d_factor >= 1 ) { /* FilterFloatUP() is faster if we can use it */ /* Perform left-wing inner product */ FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD, SMALL_FILTER_NWING, p_in, p_out, p_sys->i_remainder, p_filter->output.i_rate, -1, i_nb_channels ); /* Perform right-wing inner product */ FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD, SMALL_FILTER_NWING, p_in + i_nb_channels, p_out, p_filter->output.i_rate - p_sys->i_remainder, p_filter->output.i_rate, 1, i_nb_channels );#if 0 /* Normalize for unity filter gain */ for( int i = 0; i < i_nb_channels; i++ ) { *(p_out+i) *= d_old_scale_factor; }#endif /* Sanity check */ if( p_out_buf->i_size/p_filter->input.i_bytes_per_frame <= (unsigned int)i_out+1 ) { p_out += i_nb_channels; i_out++; p_sys->i_remainder += p_filter->input.i_rate; break; } } else { /* Perform left-wing inner product */ FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD, SMALL_FILTER_NWING, p_in, p_out, p_sys->i_remainder, p_filter->output.i_rate, p_filter->input.i_rate, -1, i_nb_channels ); /* Perform right-wing inner product */ FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD, SMALL_FILTER_NWING, p_in + i_nb_channels, p_out, p_filter->output.i_rate - p_sys->i_remainder, p_filter->output.i_rate, p_filter->input.i_rate, 1, i_nb_channels ); } p_out += i_nb_channels; i_out++; p_sys->i_remainder += p_filter->input.i_rate; } p_in += i_nb_channels; p_sys->i_remainder -= p_filter->output.i_rate; } /* Buffer i_filter_wing * 2 samples for next time */ if( p_sys->i_old_wing ) { memcpy( p_sys->p_buf, p_in_orig + (i_in_nb - 2 * p_sys->i_old_wing) * i_nb_channels, (2 * p_sys->i_old_wing) * p_filter->input.i_bytes_per_frame ); }#if 0 msg_Err( p_filter, "p_out size: %i, nb bytes out: %i", p_out_buf->i_size, i_out * p_filter->input.i_bytes_per_frame );#endif /* Free the temp buffer */#ifndef HAVE_ALLOCA free( p_in_orig );#endif /* Finalize aout buffer */ p_out_buf->i_nb_samples = i_out; p_out_buf->start_date = aout_DateGet( &p_sys->end_date ); p_out_buf->end_date = aout_DateIncrement( &p_sys->end_date, p_out_buf->i_nb_samples ); p_out_buf->i_nb_bytes = p_out_buf->i_nb_samples * i_nb_channels * sizeof(int32_t);}/***************************************************************************** * OpenFilter: *****************************************************************************/static int OpenFilter( vlc_object_t *p_this ){ filter_t *p_filter = (filter_t *)p_this; filter_sys_t *p_sys; unsigned int i_out_rate = p_filter->fmt_out.audio.i_rate; double d_factor; int i_filter_wing; if( p_filter->fmt_in.audio.i_rate == p_filter->fmt_out.audio.i_rate || p_filter->fmt_in.i_codec != VLC_FOURCC('f','l','3','2') ) { return VLC_EGENERIC; }#if !defined( SYS_DARWIN ) if( !config_GetInt( p_this, "hq-resampling" ) ) { return VLC_EGENERIC; }#endif /* Allocate the memory needed to store the module's structure */ p_filter->p_sys = p_sys = malloc( sizeof(struct filter_sys_t) ); if( p_sys == NULL ) return VLC_ENOMEM; /* Calculate worst case for the length of the filter wing */ d_factor = (double)i_out_rate / p_filter->fmt_in.audio.i_rate; i_filter_wing = ((SMALL_FILTER_NMULT + 1)/2.0) * __MAX(1.0, 1.0/d_factor) + 10; p_filter->p_sys->i_buf_size = p_filter->fmt_in.audio.i_channels * sizeof(int32_t) * 2 * i_filter_wing; /* Allocate enough memory to buffer previous samples */ p_filter->p_sys->p_buf = malloc( p_filter->p_sys->i_buf_size ); if( p_filter->p_sys->p_buf == NULL ) { free( p_sys ); return VLC_ENOMEM; } p_filter->p_sys->i_old_wing = 0; p_sys->b_first = true; p_sys->b_filter2 = true; p_filter->pf_audio_filter = Resample; msg_Dbg( p_this, "%4.4s/%iKHz/%i->%4.4s/%iKHz/%i", (char *)&p_filter->fmt_in.i_codec, p_filter->fmt_in.audio.i_rate, p_filter->fmt_in.audio.i_channels, (char *)&p_filter->fmt_out.i_codec, p_filter->fmt_out.audio.i_rate, p_filter->fmt_out.audio.i_channels); p_filter->fmt_out = p_filter->fmt_in; p_filter->fmt_out.audio.i_rate = i_out_rate; return 0;}/***************************************************************************** * CloseFilter : deallocate data structures *****************************************************************************/static void CloseFilter( vlc_object_t *p_this ){ filter_t *p_filter = (filter_t *)p_this; free( p_filter->p_sys->p_buf ); free( p_filter->p_sys );}/***************************************************************************** * Resample *****************************************************************************/static block_t *Resample( filter_t *p_filter, block_t *p_block ){ aout_filter_t aout_filter; aout_buffer_t in_buf, out_buf; block_t *p_out; int i_out_size; int i_bytes_per_frame; if( !p_block || !p_block->i_samples ) { if( p_block ) p_block->pf_release( p_block ); return NULL; } i_bytes_per_frame = p_filter->fmt_out.audio.i_channels * p_filter->fmt_out.audio.i_bitspersample / 8; i_out_size = i_bytes_per_frame * ( 1 + (p_block->i_samples * p_filter->fmt_out.audio.i_rate / p_filter->fmt_in.audio.i_rate)); p_out = p_filter->pf_audio_buffer_new( p_filter, i_out_size ); if( !p_out ) { msg_Warn( p_filter, "can't get output buffer" ); p_block->pf_release( p_block ); return NULL; } p_out->i_samples = i_out_size / i_bytes_per_frame; p_out->i_dts = p_block->i_dts; p_out->i_pts = p_block->i_pts; p_out->i_length = p_block->i_length; aout_filter.p_sys = (struct aout_filter_sys_t *)p_filter->p_sys; aout_filter.input = p_filter->fmt_in.audio; aout_filter.input.i_bytes_per_frame = p_filter->fmt_in.audio.i_channels * p_filter->fmt_in.audio.i_bitspersample / 8; aout_filter.output = p_filter->fmt_out.audio; aout_filter.output.i_bytes_per_frame = p_filter->fmt_out.audio.i_channels * p_filter->fmt_out.audio.i_bitspersample / 8; aout_filter.b_continuity = !p_filter->p_sys->b_first; p_filter->p_sys->b_first = false; in_buf.p_buffer = p_block->p_buffer; in_buf.i_nb_bytes = in_buf.i_size = p_block->i_buffer; in_buf.i_nb_samples = p_block->i_samples; out_buf.p_buffer = p_out->p_buffer; out_buf.i_nb_bytes = out_buf.i_size = p_out->i_buffer; out_buf.i_nb_samples = p_out->i_samples; DoWork( (aout_instance_t *)p_filter, &aout_filter, &in_buf, &out_buf ); p_block->pf_release( p_block ); p_out->i_buffer = out_buf.i_nb_bytes; p_out->i_samples = out_buf.i_nb_samples; return p_out;}void FilterFloatUP( const float Imp[], const float ImpD[], uint16_t Nwing, float *p_in, float *p_out, uint32_t ui_remainder, uint32_t ui_output_rate, int16_t Inc, int i_nb_channels ){ const float *Hp, *Hdp, *End; float t, temp; uint32_t ui_linear_remainder; int i; Hp = &Imp[(ui_remainder<<Nhc)/ui_output_rate]; Hdp = &ImpD[(ui_remainder<<Nhc)/ui_output_rate]; End = &Imp[Nwing]; ui_linear_remainder = (ui_remainder<<Nhc) - (ui_remainder<<Nhc)/ui_output_rate*ui_output_rate; if (Inc == 1) /* If doing right wing... */ { /* ...drop extra coeff, so when Ph is */ End--; /* 0.5, we don't do too many mult's */ if (ui_remainder == 0) /* If the phase is zero... */ { /* ...then we've already skipped the */ Hp += Npc; /* first sample, so we must also */ Hdp += Npc; /* skip ahead in Imp[] and ImpD[] */ } } while (Hp < End) { t = *Hp; /* Get filter coeff */ /* t is now interp'd filter coeff */ t += *Hdp * ui_linear_remainder / ui_output_rate / Npc; for( i = 0; i < i_nb_channels; i++ ) { temp = t; temp *= *(p_in+i); /* Mult coeff by input sample */ *(p_out+i) += temp; /* The filter output */ } Hdp += Npc; /* Filter coeff differences step */ Hp += Npc; /* Filter coeff step */ p_in += (Inc * i_nb_channels); /* Input signal step */ }}void FilterFloatUD( const float Imp[], const float ImpD[], uint16_t Nwing, float *p_in, float *p_out, uint32_t ui_remainder, uint32_t ui_output_rate, uint32_t ui_input_rate, int16_t Inc, int i_nb_channels ){ const float *Hp, *Hdp, *End; float t, temp; uint32_t ui_linear_remainder; int i, ui_counter = 0; Hp = Imp + (ui_remainder<<Nhc) / ui_input_rate; Hdp = ImpD + (ui_remainder<<Nhc) / ui_input_rate; End = &Imp[Nwing]; if (Inc == 1) /* If doing right wing... */ { /* ...drop extra coeff, so when Ph is */ End--; /* 0.5, we don't do too many mult's */ if (ui_remainder == 0) /* If the phase is zero... */ { /* ...then we've already skipped the */ Hp = Imp + /* first sample, so we must also */ (ui_output_rate << Nhc) / ui_input_rate; Hdp = ImpD + /* skip ahead in Imp[] and ImpD[] */ (ui_output_rate << Nhc) / ui_input_rate; ui_counter++; } } while (Hp < End) { t = *Hp; /* Get filter coeff */ /* t is now interp'd filter coeff */ ui_linear_remainder = ((ui_output_rate * ui_counter + ui_remainder)<< Nhc) - ((ui_output_rate * ui_counter + ui_remainder)<< Nhc) / ui_input_rate * ui_input_rate; t += *Hdp * ui_linear_remainder / ui_input_rate / Npc; for( i = 0; i < i_nb_channels; i++ ) { temp = t; temp *= *(p_in+i); /* Mult coeff by input sample */ *(p_out+i) += temp; /* The filter output */ } ui_counter++; /* Filter coeff step */ Hp = Imp + ((ui_output_rate * ui_counter + ui_remainder)<< Nhc) / ui_input_rate; /* Filter coeff differences step */ Hdp = ImpD + ((ui_output_rate * ui_counter + ui_remainder)<< Nhc) / ui_input_rate; p_in += (Inc * i_nb_channels); /* Input signal step */ }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -