📄 fdtd_2d_yee_2d_tm_final.asv
字号:
%function FDTD_2D_Yee_2D_TM_final
%constants
c_0 = 3E8; % Speed of light in free space
mu_0 = 4.0*pi*1.0e-7; % Permeability of free space
eps_0 = 1.0/(c_0*c_0*mu_0); % Permittivty of free space
%to be set
Nx = 100; % Number of cells in x-direction
Ny = 100; % Number of cells in y-direction
Nt = 500; % Number of time steps
c_ref = c_0; % Reference velocity
eps_ref = eps_0;
mu_ref = mu_0;
f_0 = 10e9; % Excitation frequency
f_ref = f_0; % Reference frequency
omega_0 = 2.0*pi*f_0; % Excitation circular frequency
omega_ref = omega_0;
lambda_ref = c_ref/f_ref; % Reference wavelength
Dx_ref = lambda_ref/20; % Reference cells width
Dy_ref = lambda_ref/20;
X = Nx*Dx_ref;
Y = Ny*Dy_ref;
r = 0.5; % Normalized factor
Dt_ref = r/c_ref*Dx_ref; % Reference time step
Dt = Dt_ref;
% initialization
Ez0 = zeros(Nx, Ny);
Ez1 = zeros(Nx, Ny);
Hx0 = zeros(Nx, Ny);
Hx1 = zeros(Nx, Ny);
Hy0 = zeros(Nx, Ny);
Hy1 = zeros(Nx, Ny);
% Source position
Nx_Source = int16(0.5*(Nx+1));
Ny_Source = int16(0.5*(Nx+1));
pulse = 0;
for n = 1:Nt % Sources' definitions
t = Dt_ref*r*n; % Actual time
Source_type = 1; % Choice of source type
switch Source_type
case 1 % Modified source function
ncycles = 1;
if t < ncycles*2.0*pi/(omega_0)
pulse = -0.5*( 1.0 - cos(omega_0*t/ncycles) ) * sin(omega_0*t);
else
pulse = 0;
end
case 2 % Sigle cos source function
if t < 2.0*pi/(omega_0)
pulse = 8*c_0^2*Dt_ref^2*mu_ref*omega_0*cos(omega_0*t);
else
pulse = 0;
end
case 3 % Gaussian pulse
if t < Dt_ref*r*50
pulse = -40*c_0*(t-t*25/(n-1))*exp(-(t-t*25/(n-1))^2/2/(50/2.3548)^2/(t/(n-1))^2);
else
pulse = 0;
end
otherwise % For debug
pulse = 1;
end
Ez0(Nx_Source,Ny_Source) = Ez0(Nx_Source,Ny_Source) - r*pulse;
CHy = Dt_ref/mu_ref/Dx_ref; % Coefficients used below
CHx = Dt_ref/mu_ref/Dy_ref;
CEzHy = Dt_ref/eps_ref/Dx_ref;
CEzHx = Dt_ref/eps_ref/Dy_ref;
for i = 2:Nx
% H update
Hx1(i,1:Ny-1) = Hx0(i,1:Ny-1) - CHx.*(Ez0(i,2:Ny)-Ez0(i,1:Ny-1));
end
for i = 1:Nx-1
Hy1(i,2:Ny) = Hy0(i,2:Ny) + CHy.*(Ez0(i+1,2:Ny)-Ez0(i,2:Ny));
end
% Boundary conditions **************************************
boundary = 3; % Choice: '1'=Mur ABC; '2'=Dirichlet; '3'=Neumann
switch boundary
case 1 % For H Mur ABC
Hx1(1,1:Ny-1) = Hx0(2, 1:Ny-1) + (r-1)/(r+1).*(Hx1(2, 1:Ny-1)-Hx0(1,1:Ny-1)); % Mur ABC @ left side x = 0
Hx1(1:Nx, Ny) = Hx0(1:Nx,Ny-1) + (r-1)/(r+1).*(Hx1(1:Nx,Ny-1)-Hx0(1:Nx, Ny)); % Mur ABC @ left side y = Ny
Hy1(1:Nx-1,1) = Hy0(1:Nx-1, 2) + (r-1)/(r+1).*(Hy1(1:Nx-1, 2)-Hy0(1:Nx-1,1)); % Mur ABC @ left side y = 0
Hy1(Nx, 1:Ny) = Hy0(Nx-1,1:Ny) + (r-1)/(r+1).*(Hy1(Nx-1,1:Ny)-Hy0(Nx, 1:Ny)); % Mur ABC @ left side x = Nx
case 2 % Dirichlet
Hx1(1:Nx, 1) = 0;
Hx1(1:Nx,Ny) = 0;
Hx1(1, 1:Ny) = 0;
Hx1(Nx,1:Ny) = 0;
Hy1(1:Nx, 1) = 0;
Hy1(1:Nx,Ny) = 0;
Hy1(1, 1:Ny) = 0;
Hy1(Nx,1:Ny) = 0;
case 3 % Neumann
Hx1(1, 1:Ny-1) = Hx0(1, 1:Ny-1);
Hx1(Nx,1:Ny-1) = Hx1(Nx,1:Ny-1);
Hx1(1:Nx, Ny) = Hx0(1:Nx, Ny);
Hx1(1:Nx, 1) = Hx1(1:Nx, 1);
Hy1(1:Nx-1, 1) = Hy0(1:Nx-1, 1);
Hy1(1:Nx-1,Ny) = Hy0(1:Nx-1,Ny);
Hy1(Nx, 1:Ny) = Hy0(Nx, 1:Ny);
Hy1(1, 1:Ny) = Hy0(1, 1:Ny);
end
for i = 2:Nx
% E update
Ez1(i,2:Ny) = Ez0(i,2:Ny) + CEzHy.*(Hy1(i,2:Ny)-Hy1(i-1,2:Ny)) - CEzHx.*(Hx1(i,2:Ny)-Hx1(i,1:Ny-1));
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -