📄 kcenter_dd.m
字号:
%KCENTER_DD k-center data description.% % W = kcenter_dd(A,fracrej,K)% % Train a k-center method with K prototypes on dataset A.% % See also kmeans_dd, som_dd, dd_roc% Copyright: D.M.J. Tax, D.M.J.Tax@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands function W = kcenter_dd(a,fracrej,K,nrtries)if nargin < 4, nrtries = 25; endif nargin < 3 | isempty(K), K = 5; endif nargin < 2 | isempty(fracrej), fracrej = 0.05; endif nargin < 1 | isempty(a) % empty nndd W = mapping(mfilename,{fracrej,K,nrtries}); W = setname(W,'K-Centers data description'); returnendif ~ismapping(fracrej) %training a = +target_class(a); % make sure a is an OC dataset k = size(a,2); % train it: D = sqrt(sqeucldistm(a,a)); D = (D+D')/2; w = dkcenter_dd(target_class(D),fracrej,K,nrtries); %and save all useful data: W.w = w; W.train_a = a; W.threshold = w.data.threshold; W = mapping(mfilename,'trained',W,str2mat('target','outlier'),k,2); W = setname(W,'K-Centers data description');else %testing W = getdata(fracrej); % unpack %compute: D = sqrt(sqeucldistm(+a,+W.train_a)); newout = +(D*W.w); % Store the distance as output (note that the 'w' already took care % of the minus-sign for the distance): W = setdat(a,newout,fracrej); W = setfeatdom(W,{[-inf 0] [-inf 0]});endreturn
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -