⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kcenter_dd.m

📁 SVDD的工具箱
💻 M
字号:
%KCENTER_DD k-center data description.% %       W = kcenter_dd(A,fracrej,K)% % Train a k-center method with K prototypes on dataset A.% % See also kmeans_dd, som_dd, dd_roc% Copyright: D.M.J. Tax, D.M.J.Tax@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands  function W = kcenter_dd(a,fracrej,K,nrtries)if nargin < 4, nrtries = 25; endif nargin < 3 | isempty(K), K = 5; endif nargin < 2 | isempty(fracrej), fracrej = 0.05; endif nargin < 1 | isempty(a) % empty nndd	W = mapping(mfilename,{fracrej,K,nrtries});	W = setname(W,'K-Centers data description');	returnendif ~ismapping(fracrej)           %training	a = +target_class(a);     % make sure a is an OC dataset	k = size(a,2);	% train it:	D = sqrt(sqeucldistm(a,a));	D = (D+D')/2;	w = dkcenter_dd(target_class(D),fracrej,K,nrtries);	%and save all useful data:	W.w = w;	W.train_a = a;	W.threshold = w.data.threshold;	W = mapping(mfilename,'trained',W,str2mat('target','outlier'),k,2);	W = setname(W,'K-Centers data description');else                               %testing	W = getdata(fracrej);  % unpack	%compute:	D = sqrt(sqeucldistm(+a,+W.train_a));	newout = +(D*W.w);	% Store the distance as output (note that the 'w' already took care	% of the minus-sign for the distance):	W = setdat(a,newout,fracrej);	W = setfeatdom(W,{[-inf 0] [-inf 0]});endreturn

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -