⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ball_dd.m

📁 SVDD的工具箱
💻 M
字号:
%BALL_DD L_p ball description%%    W = BALL_DD(X,FRACREJ,P)%% Fit a L_p ball around the data X by optimizing the weights:%      min w_0%      s.t. \sum_j w_j|x_ij-a_j|^p <= w_0%           \sum_j w_j = 1,   w_j>=0% The vector a is taken as the mean of dataset X.%% When the (feature-) weigths w are optimized, the threshold w_0% is set such that FRACREJ of the objects are outside the L_p ball.%% As a precaution, features with no variance will be removed/ignored,% otherwise a trivial solution of only using that feature is found. You% will get a warning though.%% See also lpdd, svdd, myproxm% Copyright: D.M.J. Tax, D.M.J.Tax@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlandsfunction W = ball_dd(a,fracrej,p)% Take care of empty/not-defined arguments:if nargin < 3 p = 1; endif nargin < 2 fracrej = 0.05; endif nargin < 1 | isempty(a) 	% When no inputs are given, we are expected to return an empty	% mapping:	W = mapping(mfilename,{fracrej,p});	% And give a suitable name:	W = setname(W,'Box one-class classifier');	returnendif ~ismapping(fracrej)           %training	a = target_class(a);     % only use the target class	[m,k] = size(a);	% train it:	x = +a;	mn = +mean(x);	x = x - repmat(mn,m,1);	x = abs(x).^p;  % something like a L_p distance	% check if all the features do something:	orgk = k;	I = find(var(x)<=1e-9);	if ~isempty(I)		warning('dd_tools:ZeroVarFeature',...			'Removed the features with zero variance!');		x(:,I) = [];		k = orgk - length(I);	end	% setup the LP:	f = [zeros(1,k) 1]';	A = [    x    -ones(m,1)];	b = zeros(m,1);	%	  -eye(k)  zeros(k,1)   zeros(k,m)];	%b = zeros(m+k,1);	Aeq = [ones(1,k) 0];	beq = 1;	lb = zeros(k+1,1);	ub = repmat(inf,k+1,1);	% optimize it:	if (exist('glpkmex')>0)		ctype = [repmat('S',size(Aeq,1),1);					repmat('U',size(A,1),1)];		vartype = repmat('C',size(f,1),1);		[w,fmin] = glpkmex(1,f,[Aeq;A],[beq;b],ctype,lb,ub,vartype);	else		w = linprog(f,A,b,Aeq,beq,lb,ub);	end	% use the k features and make a row vector	thr = w(k+1);	w = w(1:k);	w = w(:)';	% get the distances:	d = sum(x.*repmat(w,m,1),2);	thr = dd_threshold(d,1-fracrej);	%and save all useful data in a structure:	W.threshold = thr;	W.mn = mn;	W.w = w;	W.p = p;	W.I = I;	W = mapping(mfilename,'trained',W,str2mat('target','outlier'),orgk,2);	W = setname(W,'Box one-class classifier');else %testing	% Unpack the mapping and dataset:	W = getdata(fracrej);	[m,k] = size(a); 	% Remove the mean:	a_mn = +a - repmat(W.mn,m,1);	% Remove pointless features (found in training):	if ~isempty(W.I)		a_mn(:,W.I) = [];	end	% Compute that strange L-p:	a_mn = abs(a_mn).^W.p;	% Find the distance:	out = sum(a_mn.*repmat(W.w,m,1),2);	newout = [out repmat(W.threshold,m,1)];	% Fill in the data, keeping all other fields in the dataset intact:	W = setdat(a,-newout,fracrej);	W = setfeatdom(W,{[-inf 0] [-inf 0]});endreturn

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -