📄 gauss_dd.m
字号:
%GAUSS_DD Gaussian data description.% % W = gauss_dd(A,fracrej,r)% % Fit a Gaussian density on dataset A. If requested, the r can be% given to add some regularization to the estimated covariance matrix:% sig_new = (1-r)*sig + r*eye(dim). Default r = 0.01!!! (might be% dangerous!)%% This version actually computes just the Mahalanobis distance to the% mean. This should avoid underflows at the computation of a real Gaussian% density (especially problematic in high dimensional spaces).%% See also mcd_gauss_dd, rob_gauss_dd, mappings, dd_roc% <a href="http://www-ict.ewi.tudelft.nl/~davidt/functions/mcd_gauss_dd.html">mcd_gauss_dd</a>% Copyright: D.M.J. Tax, D.M.J.Tax@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands function W = gauss_dd(a,fracrej,r)if nargin < 3 | isempty(r), r = 0.01; endif nargin < 2 | isempty(fracrej), fracrej = 0.05; endif nargin < 1 | isempty(a) W = mapping(mfilename,{fracrej,r}); W = setname(W,'Gaussian OC'); returnendif ~ismapping(fracrej) %training a = target_class(a); % only use the target class [n,k] = size(a); % Train it: [mu,sig] = meancov(+a); sig = (1-r)*sig + r*mean(diag(sig))*eye(k); % invert the covariance matrix: sinv = inv(sig); % get the distances on the training set: X = a - repmat(mu,n,1); d = sum((X*sinv).*X,2); % Obtain the threshold: thr = dd_threshold(d,1-fracrej); %and save all useful data: W.m = +mu; W.sinv = sinv; W.threshold = thr; W.scale = mean(d); W = mapping(mfilename,'trained',W,str2mat('target','outlier'),k,2); W = setname(W,'Gaussian OC');else %testing % Extract the data: W = getdata(fracrej); m = size(a,1); % Compute the Mahalanobis distance (to avoid problems in the non-essential % normalization factor): X = +a - repmat(W.m,m,1); out = sum((X*W.sinv).*X,2); newout = [out repmat(W.threshold,m,1)]; % Store the distance as output: W = setdat(a,-newout,fracrej); W = setfeatdom(W,{[-inf 0] [-inf 0]});endreturn
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -